These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

812 related articles for article (PubMed ID: 33977496)

  • 1. SARS-CoV-2 in patients with cancer: possible role of mimicry of human molecules by viral proteins and the resulting anti-cancer immunity.
    Burgio S; Conway de Macario E; Macario AJ; Cappello F
    Cell Stress Chaperones; 2021 Jul; 26(4):611-616. PubMed ID: 33977496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19.
    Marino Gammazza A; Légaré S; Lo Bosco G; Fucarino A; Angileri F; Conway de Macario E; Macario AJ; Cappello F
    Cell Stress Chaperones; 2020 Sep; 25(5):737-741. PubMed ID: 32754823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC.
    Anand P; Puranik A; Aravamudan M; Venkatakrishnan AJ; Soundararajan V
    Elife; 2020 May; 9():. PubMed ID: 32452762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoantibodies to heat shock protein 60, 70, and 90 are not altered in the anti-SARS-CoV-2 IgG-seropositive humans without or with mild symptoms.
    Mantej J; Bednarek M; Sitko K; Świętoń M; Tukaj S
    Cell Stress Chaperones; 2021 Jul; 26(4):735-740. PubMed ID: 34080135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants.
    Weisblum Y; Schmidt F; Zhang F; DaSilva J; Poston D; Lorenzi JC; Muecksch F; Rutkowska M; Hoffmann HH; Michailidis E; Gaebler C; Agudelo M; Cho A; Wang Z; Gazumyan A; Cipolla M; Luchsinger L; Hillyer CD; Caskey M; Robbiani DF; Rice CM; Nussenzweig MC; Hatziioannou T; Bieniasz PD
    Elife; 2020 Oct; 9():. PubMed ID: 33112236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-regulation of antibody responses against the SARS-CoV-2 Spike protein and commensal microbiota via molecular mimicry.
    Bondareva M; Budzinski L; Durek P; Witkowski M; Angermair S; Ninnemann J; Kreye J; Letz P; Ferreira-Gomes M; Semin I; Guerra GM; Momsen Reincke S; Sánchez-Sendin E; Yilmaz S; Sempert T; Heinz GA; Tizian C; Raftery M; Schönrich G; Matyushkina D; Smirnov IV; Govorun VM; Schrezenmeier E; Stefanski AL; Dörner T; Zocche S; Viviano E; Klement N; Sehmsdorf KJ; Lunin A; Chang HD; Drutskaya M; Kozlovskaya L; Treskatsch S; Radbruch A; Diefenbach A; Prüss H; Enghard P; Mashreghi MF; Kruglov AA
    Cell Host Microbe; 2023 Nov; 31(11):1866-1881.e10. PubMed ID: 37944493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins.
    Nunez-Castilla J; Stebliankin V; Baral P; Balbin CA; Sobhan M; Cickovski T; Mondal AM; Narasimhan G; Chapagain P; Mathee K; Siltberg-Liberles J
    Viruses; 2022 Jun; 14(7):. PubMed ID: 35891400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases.
    Vojdani A; Vojdani E; Kharrazian D
    Front Immunol; 2020; 11():617089. PubMed ID: 33584709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitope profiling reveals binding signatures of SARS-CoV-2 immune response in natural infection and cross-reactivity with endemic human CoVs.
    Stoddard CI; Galloway J; Chu HY; Shipley MM; Sung K; Itell HL; Wolf CR; Logue JK; Magedson A; Garrett ME; Crawford KHD; Laserson U; Matsen FA; Overbaugh J
    Cell Rep; 2021 May; 35(8):109164. PubMed ID: 33991511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status.
    Neidleman J; Luo X; McGregor M; Xie G; Murray V; Greene WC; Lee SA; Roan NR
    Elife; 2021 Oct; 10():. PubMed ID: 34636722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SARS-CoV-2 Interactome 3D: A Web interface for 3D visualization and analysis of SARS-CoV-2-human mimicry and interactions.
    Ovek D; Taweel A; Abali Z; Tezsezen E; Koroglu YE; Tsai CJ; Nussinov R; Keskin O; Gursoy A
    Bioinformatics; 2022 Feb; 38(5):1455-1457. PubMed ID: 34864889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can molecular mimicry explain the cytokine storm of SARS-CoV-2?: An in silico approach.
    Obando-Pereda G
    J Med Virol; 2021 Sep; 93(9):5350-5357. PubMed ID: 33913542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping SARS-CoV-2 Antibody Epitopes in COVID-19 Patients with a Multi-Coronavirus Protein Microarray.
    Camerini D; Randall AZ; Trappl-Kimmons K; Oberai A; Hung C; Edgar J; Shandling A; Huynh V; Teng AA; Hermanson G; Pablo JV; Stumpf MM; Lester SN; Harcourt J; Tamin A; Rasheed M; Thornburg NJ; Satheshkumar PS; Liang X; Kennedy RB; Yee A; Townsend M; Campo JJ
    Microbiol Spectr; 2021 Oct; 9(2):e0141621. PubMed ID: 34704808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mimicry between SARS-CoV-2 and the female reproductive system.
    Dotan A; Kanduc D; Muller S; Makatsariya A; Shoenfeld Y
    Am J Reprod Immunol; 2021 Dec; 86(6):e13494. PubMed ID: 34407240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay of Antibody and Cytokine Production Reveals CXCL13 as a Potential Novel Biomarker of Lethal SARS-CoV-2 Infection.
    Horspool AM; Kieffer T; Russ BP; DeJong MA; Wolf MA; Karakiozis JM; Hickey BJ; Fagone P; Tacker DH; Bevere JR; Martinez I; Barbier M; Perrotta PL; Damron FH
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33472985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: from the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin.
    Sokolov AV; Isakova-Sivak IN; Mezhenskaya DA; Kostevich VA; Gorbunov NP; Elizarova AY; Matyushenko VA; Berson YM; Grudinina NA; Kolmakov NN; Zabrodskaya YA; Komlev AS; Semak IV; Budevich AI; Rudenko LG; Vasilyev VB
    Biometals; 2023 Jun; 36(3):437-462. PubMed ID: 36334191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts.
    Kundu R; Narean JS; Wang L; Fenn J; Pillay T; Fernandez ND; Conibear E; Koycheva A; Davies M; Tolosa-Wright M; Hakki S; Varro R; McDermott E; Hammett S; Cutajar J; Thwaites RS; Parker E; Rosadas C; McClure M; Tedder R; Taylor GP; Dunning J; Lalvani A
    Nat Commun; 2022 Jan; 13(1):80. PubMed ID: 35013199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19.
    Ziegler CGK; Miao VN; Owings AH; Navia AW; Tang Y; Bromley JD; Lotfy P; Sloan M; Laird H; Williams HB; George M; Drake RS; Christian T; Parker A; Sindel CB; Burger MW; Pride Y; Hasan M; Abraham GE; Senitko M; Robinson TO; Shalek AK; Glover SC; Horwitz BH; Ordovas-Montanes J
    Cell; 2021 Sep; 184(18):4713-4733.e22. PubMed ID: 34352228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage-Displayed Mimotopes of SARS-CoV-2 Spike Protein Targeted to Authentic and Alternative Cellular Receptors.
    Petrenko VA; Gillespie JW; De Plano LM; Shokhen MA
    Viruses; 2022 Feb; 14(2):. PubMed ID: 35215976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using bioinformatic protein sequence similarity to investigate if SARS CoV-2 infection could cause an ocular autoimmune inflammatory reactions?
    Karagöz IK; Munk MR; Kaya M; Rückert R; Yıldırım M; Karabaş L
    Exp Eye Res; 2021 Feb; 203():108433. PubMed ID: 33400927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.