These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33978043)

  • 41. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy.
    Valencia PM; Pridgen EM; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2013 Dec; 7(12):10671-80. PubMed ID: 24215426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles.
    Ozcelik A; Aslan Z
    Biomicrofluidics; 2022 Jan; 16(1):014103. PubMed ID: 35154554
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs.
    Terada T; Kanou M; Hashimoto Y; Tanimoto M; Sugimoto M
    J Pharm Sci; 2022 Jun; 111(6):1709-1718. PubMed ID: 34863973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermodynamic, Spatial and Methodological Considerations for the Manufacturing of Therapeutic Polymer Nanoparticles.
    Maslanka Figueroa S; Fleischmann D; Beck S; Goepferich A
    Pharm Res; 2020 Feb; 37(3):59. PubMed ID: 32095934
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of Albumin in the Microfluidic Synthesis of PEG-PLGA Nanoparticles.
    Poller B; Painter GF; Walker GF
    Pharm Nanotechnol; 2019; 7(6):460-468. PubMed ID: 31657694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of bulk and microfluidics methods for the formulation of poly-lactic-
    Streck S; Neumann H; Nielsen HM; Rades T; McDowell A
    Int J Pharm X; 2019 Dec; 1():100030. PubMed ID: 31517295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The roadmap to micro: Generation of micron-sized polymeric particles using a commercial microfluidic system.
    Cruz-Acuña M; Kakwere H; Lewis JS
    J Biomed Mater Res A; 2022 May; 110(5):1121-1133. PubMed ID: 35073454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Screening strategies for surface modification of lipid-polymer hybrid nanoparticles.
    Rouco H; García-García P; Évora C; Díaz-Rodríguez P; Delgado A
    Int J Pharm; 2022 Aug; 624():121973. PubMed ID: 35811041
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.
    Li X; Jiang X
    Adv Drug Deliv Rev; 2018 Mar; 128():101-114. PubMed ID: 29277543
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis and application of poly(ethylene glycol)-co-poly(β-amino ester) copolymers for small cell lung cancer gene therapy.
    Kim J; Kang Y; Tzeng SY; Green JJ
    Acta Biomater; 2016 Sep; 41():293-301. PubMed ID: 27262740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal-Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles.
    Khan MRH; Armstrong Z; Lenertz M; Saenz B; Kale N; Li Q; MacRae A; Yang Z; Quadir M
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14405-14420. PubMed ID: 38490971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles.
    Shen H; Hu X; Szymusiak M; Wang ZJ; Liu Y
    Mol Pharm; 2013 Dec; 10(12):4546-51. PubMed ID: 24195658
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices.
    Kim Y; Lee Chung B; Ma M; Mulder WJ; Fayad ZA; Farokhzad OC; Langer R
    Nano Lett; 2012 Jul; 12(7):3587-91. PubMed ID: 22716029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-step process to produce surface-functionalized polymeric nanoparticles.
    Sussman EM; Clarke MB; Shastri VP
    Langmuir; 2007 Nov; 23(24):12275-9. PubMed ID: 17963413
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats.
    Li Y; Pei Y; Zhang X; Gu Z; Zhou Z; Yuan W; Zhou J; Zhu J; Gao X
    J Control Release; 2001 Apr; 71(2):203-11. PubMed ID: 11274752
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA.
    Perez C; Sanchez A; Putnam D; Ting D; Langer R; Alonso MJ
    J Control Release; 2001 Jul; 75(1-2):211-24. PubMed ID: 11451511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin.
    Cong Y; Quan C; Liu M; Liu J; Huang G; Tong G; Yin Y; Zhang C; Jiang Q
    J Biomater Sci Polym Ed; 2015; 26(11):629-43. PubMed ID: 25994241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation.
    Albisa A; Piacentini E; Sebastian V; Arruebo M; Santamaria J; Giorno L
    Pharm Res; 2017 Jun; 34(6):1296-1308. PubMed ID: 28342057
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brain targeting of Atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles.
    Simşek S; Eroğlu H; Kurum B; Ulubayram K
    J Microencapsul; 2013; 30(1):10-20. PubMed ID: 22734433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.
    Gou J; Chao Y; Liang Y; Zhang N; He H; Yin T; Zhang Y; Xu H; Tang X
    Pharm Res; 2016 Sep; 33(9):2140-51. PubMed ID: 27251415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.