BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33978532)

  • 1. Pancreatin-induced liberation of starch/cyanidin 3-
    Takahama U; Park J; Ansai T; Hirota S
    Int J Food Sci Nutr; 2022 Feb; 73(1):39-48. PubMed ID: 33978532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further slowing down of hydrolysis of amylose heated with black soybean extract by treating with nitrite under gastric conditions.
    Takahama U; Hirota S
    Sci Rep; 2022 Aug; 12(1):13212. PubMed ID: 35918428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of amylose-procyanidin complexes to slower starch digestion of red-colored rice prepared by cooking with adzuki bean.
    Morina F; Hirota S; Takahama U
    Int J Food Sci Nutr; 2020 Sep; 71(6):715-725. PubMed ID: 31986936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow hydrolysis of amylose in soluble starch and amylopectin in suspendable starch liberated from non-glutinous rice flour heated with a sorghum extract.
    Takahama U; Ansai T; Hirota S
    Heliyon; 2022 Nov; 8(11):e11605. PubMed ID: 36444262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Procyanidin C1-Dependent Inhibition of the Hydrolysis of Potato Starch and Corn Starch Induced by Pancreatin.
    Takahama U; Hirota S
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow starch hydrolysis of non-glutinous rice flour and potato starch heated with taxifolin: contribution of proteins to the former and longer amylose to the latter.
    Takahama U; Yanase E; Kokabu S; Ansai T; Hirota S
    Int J Food Sci Nutr; 2023; 74(4):463-475. PubMed ID: 37332106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Pancreatin-Induced Digestion of Starch in Starch Granules by Starch/Fatty Acid and Starch/Flavonoid Complexes in Retrograding Rice Flour.
    Hirota S; Takahama U
    Foods; 2018 Aug; 7(8):. PubMed ID: 30103415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular causes for the increased stickiness of cooked non-glutinous rice by enzymatic hydrolysis of the grain surface protein.
    Li H; Yang J; Yan S; Lei N; Wang J; Sun B
    Carbohydr Polym; 2019 Jul; 216():197-203. PubMed ID: 31047057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow starch digestion in the rice cooked with adzuki bean: Contribution of procyanidins and the oxidation products.
    Takahama U; Hirota S; Yanase E
    Food Res Int; 2019 May; 119():187-195. PubMed ID: 30884648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Susceptibility of glutinous rice starch to digestive enzymes.
    Guo L; Zhang J; Hu J; Li X; Du X
    Carbohydr Polym; 2015 Sep; 128():154-62. PubMed ID: 26005151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch.
    Nakamura S; Satoh H; Ohtsubo K
    Biosci Biotechnol Biochem; 2015; 79(3):443-55. PubMed ID: 25384364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality characteristics of semi-glutinous japonica rice cultivated in the middle and lower reaches of the Yangtze River in China.
    Zhu Y; Xu D; Chen X; Ma Z; Ma H; Zhang M; Liu G; Wei H; Zhang H
    J Sci Food Agric; 2022 Jul; 102(9):3712-3723. PubMed ID: 34893992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of bioactive-phytochemical characteristics, antioxidants activities, and anti-inflammatory properties of selected black rice germ and bran (
    Mapoung S; Semmarath W; Arjsri P; Thippraphan P; Srisawad K; Umsumarng S; Phromnoi K; Jamjod S; Prom-U-Thai C; Dejkriengkraikul P
    Eur Food Res Technol; 2023; 249(2):451-464. PubMed ID: 36246093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexation of rice glutelin fibrils with cyanidin-3-O-glucoside at acidic condition: Thermal stability, binding mechanism and structural characterization.
    Li T; Wang L; Zhang X; Yu P; Chen Z
    Food Chem; 2021 Nov; 363():130367. PubMed ID: 34198143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference.
    Tao K; Yu W; Prakash S; Gilbert RG
    Carbohydr Polym; 2019 Sep; 219():251-260. PubMed ID: 31151523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of different dietary starch sources on growth and glucose metabolism of geese.
    Xu C; Yang Z; Yang ZF; He XX; Zhang CY; Yang HM; Rose SP; Wang ZY
    Poult Sci; 2023 Feb; 102(2):102362. PubMed ID: 36566658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-retrogradation relationship of rice starch in purified starches and cooked rice grains: a statistical investigation.
    Yao Y; Zhang J; Ding X
    J Agric Food Chem; 2002 Dec; 50(25):7420-5. PubMed ID: 12452669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of water content of high-amylose corn starch and glutinous rice starch combined with lipids on formation of starch-lipid complexes during deep-fat frying.
    Wang H; Wu Y; Wang N; Yang L; Zhou Y
    Food Chem; 2019 Apr; 278():515-522. PubMed ID: 30583406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of molecular structure of starch on the glutinous taste quality of cooked chestnut kernels.
    He W; Han M; Wu Y; Ouyang J; Xu C
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127704. PubMed ID: 37898245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of glutinous rice flour from broken rice via ultrasonic assisted extraction of amylose.
    Setyawati YD; Ahsan SF; Ong LK; Soetaredjo FE; Ismadji S; Ju YH
    Food Chem; 2016 Jul; 203():158-164. PubMed ID: 26948601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.