BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33978748)

  • 1. Inferring the experimental design for accurate gene regulatory network inference.
    Seçilmiş D; Hillerton T; Nelander S; Sonnhammer ELL
    Bioinformatics; 2021 Oct; 37(20):3553-3559. PubMed ID: 33978748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowledge of the perturbation design is essential for accurate gene regulatory network inference.
    Seçilmiş D; Hillerton T; Tjärnberg A; Nelander S; Nordling TEM; Sonnhammer ELL
    Sci Rep; 2022 Oct; 12(1):16531. PubMed ID: 36192495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and accurate gene regulatory network inference by normalized least squares regression.
    Hillerton T; Seçilmiş D; Nelander S; Sonnhammer ELL
    Bioinformatics; 2022 Apr; 38(8):2263-2268. PubMed ID: 35176145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalized framework for controlling FDR in gene regulatory network inference.
    Morgan D; Tjärnberg A; Nordling TEM; Sonnhammer ELL
    Bioinformatics; 2019 Mar; 35(6):1026-1032. PubMed ID: 30169550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference.
    Seçilmiş D; Nelander S; Sonnhammer ELL
    Front Genet; 2022; 13():855770. PubMed ID: 35923701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal design of gene knockout experiments for gene regulatory network inference.
    Ud-Dean SM; Gunawan R
    Bioinformatics; 2016 Mar; 32(6):875-83. PubMed ID: 26568633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.
    Ghosh Roy G; Geard N; Verspoor K; He S
    Bioinformatics; 2021 Jan; 36(21):5187-5193. PubMed ID: 32697830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data.
    Li L; Sun L; Chen G; Wong CW; Ching WK; Liu ZP
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37079737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive inference of time-delayed gene regulation by network deconvolution.
    Chen H; Mundra PA; Zhao LN; Lin F; Zheng J
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S6. PubMed ID: 25521243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and accurate inference of gene regulatory networks through robust precision matrix estimation.
    Passemiers A; Moreau Y; Raimondi D
    Bioinformatics; 2022 May; 38(10):2802-2809. PubMed ID: 35561176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse network diffusion to remove indirect noise for better inference of gene regulatory networks.
    Yu J; Leng J; Yuan F; Sun D; Wu LY
    Bioinformatics; 2024 Jul; ():. PubMed ID: 38963312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
    Aubin-Frankowski PC; Vert JP
    Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATEN: And/Or tree ensemble for inferring accurate Boolean network topology and dynamics.
    Shi N; Zhu Z; Tang K; Parker D; He S
    Bioinformatics; 2020 Jan; 36(2):578-585. PubMed ID: 31368481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambiguity in logic-based models of gene regulatory networks: An integrative multi-perturbation analysis.
    Alizad-Rahvar AR; Sadeghi M
    PLoS One; 2018; 13(11):e0206976. PubMed ID: 30458000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative random forest for gene regulatory network inference.
    Petralia F; Wang P; Yang J; Tu Z
    Bioinformatics; 2015 Jun; 31(12):i197-205. PubMed ID: 26072483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing gene regulatory networks inference through hub-based data integration.
    Naseri A; Sharghi M; Hasheminejad SMH
    Comput Biol Chem; 2021 Dec; 95():107589. PubMed ID: 34673384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GeneSPIDER - gene regulatory network inference benchmarking with controlled network and data properties.
    Tjärnberg A; Morgan DC; Studham M; Nordling TEM; Sonnhammer ELL
    Mol Biosyst; 2017 Jun; 13(7):1304-1312. PubMed ID: 28485748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RMaNI: Regulatory Module Network Inference framework.
    Madhamshettiwar PB; Maetschke SR; Davis MJ; Ragan MA
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S14. PubMed ID: 24564496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.