BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33978752)

  • 1. ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules.
    Mersmann SF; Strömich L; Song FJ; Wu N; Vianello F; Barahona M; Yaliraki SN
    Nucleic Acids Res; 2021 Jul; 49(W1):W551-W558. PubMed ID: 33978752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering allosteric pathways in caspase-1 using Markov transient analysis and multiscale community detection.
    Amor B; Yaliraki SN; Woscholski R; Barahona M
    Mol Biosyst; 2014 Aug; 10(8):2247-58. PubMed ID: 24947802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allostery and cooperativity in multimeric proteins: bond-to-bond propensities in ATCase.
    Hodges M; Barahona M; Yaliraki SN
    Sci Rep; 2018 Jul; 8(1):11079. PubMed ID: 30038211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Protein Allosteric Signalling Pathways and Functional Residues Through Paths of Optimised Propensity.
    Wu N; Yaliraki SN; Barahona M
    J Mol Biol; 2022 Sep; 434(17):167749. PubMed ID: 35841931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities.
    Amor BR; Schaub MT; Yaliraki SN; Barahona M
    Nat Commun; 2016 Aug; 7():12477. PubMed ID: 27561351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MCPath: Monte Carlo path generation approach to predict likely allosteric pathways and functional residues.
    Kaya C; Armutlulu A; Ekesan S; Haliloglu T
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W249-55. PubMed ID: 23742907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PASSer: fast and accurate prediction of protein allosteric sites.
    Tian H; Xiao S; Jiang X; Tao P
    Nucleic Acids Res; 2023 Jul; 51(W1):W427-W431. PubMed ID: 37102691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPACER: Server for predicting allosteric communication and effects of regulation.
    Goncearenco A; Mitternacht S; Yong T; Eisenhaber B; Eisenhaber F; Berezovsky IN
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W266-72. PubMed ID: 23737445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.
    Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.
    Allain A; Chauvot de Beauchêne I; Langenfeld F; Guarracino Y; Laine E; Tchertanov L
    Faraday Discuss; 2014; 169():303-21. PubMed ID: 25340971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AlloSigMA 2: paving the way to designing allosteric effectors and to exploring allosteric effects of mutations.
    Tan ZW; Guarnera E; Tee WV; Berezovsky IN
    Nucleic Acids Res; 2020 Jul; 48(W1):W116-W124. PubMed ID: 32392302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures.
    Egbert M; Jones G; Collins MR; Kozakov D; Vajda S
    J Mol Biol; 2022 Jun; 434(11):167587. PubMed ID: 35662465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites.
    Panjkovich A; Daura X
    Bioinformatics; 2014 May; 30(9):1314-5. PubMed ID: 24413526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric Methods and Their Applications: Facilitating the Discovery of Allosteric Drugs and the Investigation of Allosteric Mechanisms.
    Lu S; Shen Q; Zhang J
    Acc Chem Res; 2019 Feb; 52(2):492-500. PubMed ID: 30688063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.
    Xu Y; Wang S; Hu Q; Gao S; Ma X; Zhang W; Shen Y; Chen F; Lai L; Pei J
    Nucleic Acids Res; 2018 Jul; 46(W1):W374-W379. PubMed ID: 29750256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design.
    Huang W; Nussinov R; Zhang J
    Methods Mol Biol; 2017; 1529():439-446. PubMed ID: 27914066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CavityPlus 2022 Update: An Integrated Platform for Comprehensive Protein Cavity Detection and Property Analyses with User-friendly Tools and Cavity Databases.
    Wang S; Xie J; Pei J; Lai L
    J Mol Biol; 2023 Jul; 435(14):168141. PubMed ID: 37356903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BioSuper: a web tool for the superimposition of biomolecules and assemblies with rotational symmetry.
    Rueda M; Orozco M; Totrov M; Abagyan R
    BMC Struct Biol; 2013 Dec; 13():32. PubMed ID: 24330655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDTD: a web-accessible protein database for drug target identification.
    Gao Z; Li H; Zhang H; Liu X; Kang L; Luo X; Zhu W; Chen K; Wang X; Jiang H
    BMC Bioinformatics; 2008 Feb; 9():104. PubMed ID: 18282303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDB-tools web: A user-friendly interface for the manipulation of PDB files.
    Jiménez-García B; Teixeira JMC; Trellet M; Rodrigues JPGLM; Bonvin AMJJ
    Proteins; 2021 Mar; 89(3):330-335. PubMed ID: 33111403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.