These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33978894)

  • 1. Detection of microaneurysms and hemorrhages based on improved Hessian matrix.
    Yang L; Yan S; Xie Y
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):883-894. PubMed ID: 33978894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microaneurysms detection in color fundus images using machine learning based on directional local contrast.
    Long S; Chen J; Hu A; Liu H; Chen Z; Zheng D
    Biomed Eng Online; 2020 Apr; 19(1):21. PubMed ID: 32295576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical morphology for microaneurysm detection in fundus images.
    Joshi S; Karule PT
    Eur J Ophthalmol; 2020 Sep; 30(5):1135-1142. PubMed ID: 31018679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated microaneurysm detection method based on Eigenvalue analysis using Hessian matrix in retinal fundus images.
    Inoue T; Hatanaka Y; Okumura S; Muramatsu C; Fujita H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5873-6. PubMed ID: 24111075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms.
    Khojasteh P; Aliahmad B; Kumar DK
    BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resilient back-propagation machine learning-based classification on fundus images for retinal microaneurysm detection.
    Steffi S; Sam Emmanuel WR
    Int Ophthalmol; 2024 Feb; 44(1):91. PubMed ID: 38367192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy.
    Selçuk T; Alkan A
    Med Hypotheses; 2019 Aug; 129():109242. PubMed ID: 31371092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on hemorrhage detection using hybrid method in fundus images.
    Bae JP; Kim KG; Kang HC; Jeong CB; Park KH; Hwang JM
    J Digit Imaging; 2011 Jun; 24(3):394-404. PubMed ID: 20177733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels.
    Srivastava R; Duan L; Wong DWK; Liu J; Wong TY
    Comput Methods Programs Biomed; 2017 Jan; 138():83-91. PubMed ID: 27886718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated detection of fundus photographic red lesions in diabetic retinopathy.
    Larsen M; Godt J; Larsen N; Lund-Andersen H; Sjølie AK; Agardh E; Kalm H; Grunkin M; Owens DR
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):761-6. PubMed ID: 12556411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical Geometrical Features for Microaneurysm Detection.
    Manjaramkar A; Kokare M
    J Digit Imaging; 2018 Apr; 31(2):224-234. PubMed ID: 28785874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary Observer System for Detection of Microaneurysms in Fundus Images Using Texture Descriptors.
    Derwin DJ; Selvi ST; Singh OJ
    J Digit Imaging; 2020 Feb; 33(1):159-167. PubMed ID: 31144148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of microaneurysms and hemorrhages in digital fundus images.
    Kande GB; Savithri TS; Subbaiah PV
    J Digit Imaging; 2010 Aug; 23(4):430-7. PubMed ID: 19921335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of microaneurysms in retinal fundus images.
    Wu B; Zhu W; Shi F; Zhu S; Chen X
    Comput Med Imaging Graph; 2017 Jan; 55():106-112. PubMed ID: 27595214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing a Novel Layer in Convolutional Neural Network for Automatic Identification of Diabetic Retinopathy.
    Khojasteh P; Aliahmad B; Arjunan SP; Kumar DK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5938-5941. PubMed ID: 30441688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Detection of microaneurysms in fundus images based on improved YOLOv4 with SENet embedded].
    Gao W; Shan M; Song N; Fan B; Fang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Aug; 39(4):713-720. PubMed ID: 36008335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microaneurysm detection using fully convolutional neural networks.
    Chudzik P; Majumdar S; Calivá F; Al-Diri B; Hunter A
    Comput Methods Programs Biomed; 2018 May; 158():185-192. PubMed ID: 29544784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microaneurysm detection in color eye fundus images for diabetic retinopathy screening.
    Melo T; Mendonça AM; Campilho A
    Comput Biol Med; 2020 Nov; 126():103995. PubMed ID: 33007620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red lesion detection in retinal fundus images using Frangi-based filters.
    Srivastava R; Wong DW; Lixin Duan ; Jiang Liu ; Tien Yin Wong
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5663-6. PubMed ID: 26737577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.