These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 33978947)
1. Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination. Matys Grygar T; Faměra M; Hošek M; Elznicová J; Rohovec J; Matoušková Š; Navrátil T Environ Sci Pollut Res Int; 2021 Oct; 28(37):51183-51198. PubMed ID: 33978947 [TBL] [Abstract][Full Text] [Related]
2. Mobilisation of Cd, Mn, and Zn in floodplains by action of plants and its consequences for spreading historical contamination and fluvial geochemistry. Grygar TM; Hošek M; Elznicová J; Machová I; Kubát K; Adamec S; Tůmová Š; Rohovec J; Navrátil T Environ Sci Pollut Res Int; 2023 Mar; 30(14):40461-40477. PubMed ID: 36609757 [TBL] [Abstract][Full Text] [Related]
3. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils? Vondráčková S; Tlustoš P; Száková J Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494 [TBL] [Abstract][Full Text] [Related]
4. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter. Xing W; Liu H; Banet T; Wang H; Ippolito JA; Li L Ecotoxicol Environ Saf; 2020 Jul; 198():110683. PubMed ID: 32361499 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal uptake by plant parts of willow species: A meta-analysis. Tőzsér D; Magura T; Simon E J Hazard Mater; 2017 Aug; 336():101-109. PubMed ID: 28482187 [TBL] [Abstract][Full Text] [Related]
6. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Vandecasteele B; Quataert P; Genouw G; Lettens S; Tack FM Sci Total Environ; 2009 Oct; 407(20):5289-97. PubMed ID: 19619889 [TBL] [Abstract][Full Text] [Related]
7. Edible wild plants growing in contaminated floodplains: implications for the issuance of tribal consumption advisories within the Grand Lake watershed of northeastern Oklahoma, USA. Garvin EM; Bridge CF; Garvin MS Environ Geochem Health; 2018 Jun; 40(3):999-1025. PubMed ID: 28466201 [TBL] [Abstract][Full Text] [Related]
8. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648 [TBL] [Abstract][Full Text] [Related]
9. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Lamb DT; Ming H; Megharaj M; Naidu R J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626 [TBL] [Abstract][Full Text] [Related]
10. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. El Azhari A; Rhoujjati A; El Hachimi ML; Ambrosi JP Ecotoxicol Environ Saf; 2017 Oct; 144():464-474. PubMed ID: 28667858 [TBL] [Abstract][Full Text] [Related]
11. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops. Mayerová M; Petrová Š; Madaras M; Lipavský J; Šimon T; Vaněk T Environ Sci Pollut Res Int; 2017 Jun; 24(17):14706-14716. PubMed ID: 28456920 [TBL] [Abstract][Full Text] [Related]
12. Seasonal variations of metal (Cd, Pb, Mn, Cu, Zn) accumulation in a voluntary species, Salix subfragilis, in unpolluted wetlands. Kim HT; Kim JG Sci Total Environ; 2018 Jan; 610-611():1210-1221. PubMed ID: 28851142 [TBL] [Abstract][Full Text] [Related]
13. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
14. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Zárubová P; Hejcman M; Vondráčková S; Mrnka L; Száková J; Tlustoš P Environ Sci Pollut Res Int; 2015 Dec; 22(23):18801-13. PubMed ID: 26201656 [TBL] [Abstract][Full Text] [Related]
15. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Evangelou MW; Robinson BH; Günthardt-Goerg MS; Schulin R Int J Phytoremediation; 2013; 15(1):77-90. PubMed ID: 23487987 [TBL] [Abstract][Full Text] [Related]
16. Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment. Jun L; Wei H; Aili M; Juan N; Hongyan X; Jingsong H; Yunhua Z; Cuiying P Environ Res; 2020 Sep; 188():109886. PubMed ID: 32846652 [TBL] [Abstract][Full Text] [Related]
17. Robust assessment of moderate heavy metal contamination levels in floodplain sediments: a case study on the Jizera River, Czech Republic. Grygar TM; Nováková T; Bábek O; Elznicová J; Vadinová N Sci Total Environ; 2013 May; 452-453():233-45. PubMed ID: 23523721 [TBL] [Abstract][Full Text] [Related]
18. [Heavy Metal Contamination of Soils and Crops near a Zinc Smelter]. Chen F; Dong ZQ; Wang CC; Wei XH; Hu Y; Zhang LJ Huan Jing Ke Xue; 2017 Oct; 38(10):4360-4369. PubMed ID: 29965222 [TBL] [Abstract][Full Text] [Related]
19. Urban soil phytomanagement for Zn and Cd in situ removal, greening, and Zn-rich biomass production taking care of snail exposure. Grignet A; de Vaufleury A; Papin A; Bert V Environ Sci Pollut Res Int; 2020 Jan; 27(3):3187-3201. PubMed ID: 31838670 [TBL] [Abstract][Full Text] [Related]
20. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]