BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33979214)

  • 1. Mechanics of dystrophin deficient skeletal muscles in very young mice and effects of age.
    Lopez MA; Bontiff S; Adeyeye M; Shaibani AI; Alexander MS; Wynd S; Boriek AM
    Am J Physiol Cell Physiol; 2021 Aug; 321(2):C230-C246. PubMed ID: 33979214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle.
    Lindsay A; Larson AA; Verma M; Ervasti JM; Lowe DA
    J Appl Physiol (1985); 2019 Feb; 126(2):363-375. PubMed ID: 30571283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular, cellular, and muscle strip mechanics of the mdx mouse diaphragm.
    Bates G; Sigurdardottir S; Kachmar L; Zitouni NB; Benedetti A; Petrof BJ; Rassier D; Lauzon AM
    Am J Physiol Cell Physiol; 2013 May; 304(9):C873-80. PubMed ID: 23426972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy.
    Claflin DR; Brooks SV
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C651-8. PubMed ID: 18171725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Models in Applied Physiology. Merosin deficiency leads to alterations in passive and active skeletal muscle mechanics.
    Jannapureddy SR; Patel ND; Hwang W; Boriek AM
    J Appl Physiol (1985); 2003 Jun; 94(6):2524-33; discussion 2523. PubMed ID: 12736195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dystrophin-negative slow-twitch soleus muscles are not susceptible to eccentric contraction induced injury over the lifespan of the
    Kiriaev L; Kueh S; Morley JW; Houweling PJ; Chan S; North KN; Head SI
    Am J Physiol Cell Physiol; 2021 Oct; 321(4):C704-C720. PubMed ID: 34432537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.
    Miyazaki D; Nakamura A; Fukushima K; Yoshida K; Takeda S; Ikeda S
    Hum Mol Genet; 2011 May; 20(9):1787-99. PubMed ID: 21320869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle.
    Blaauw B; Mammucari C; Toniolo L; Agatea L; Abraham R; Sandri M; Reggiani C; Schiaffino S
    Hum Mol Genet; 2008 Dec; 17(23):3686-96. PubMed ID: 18753145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic
    Ritter P; Nübler S; Buttgereit A; Smith LR; Mühlberg A; Bauer J; Michael M; Kreiß L; Haug M; Barton E; Friedrich O
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle.
    Yuasa K; Nakamura A; Hijikata T; Takeda S
    BMC Musculoskelet Disord; 2008 Jan; 9():1. PubMed ID: 18182116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force transmission, compliance, and viscoelasticity are altered in the alpha7-integrin-null mouse diaphragm.
    Lopez MA; Mayer U; Hwang W; Taylor T; Hashmi MA; Jannapureddy SR; Boriek AM
    Am J Physiol Cell Physiol; 2005 Feb; 288(2):C282-9. PubMed ID: 15643051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthine oxidase is hyper-active in Duchenne muscular dystrophy.
    Lindsay A; McCourt PM; Karachunski P; Lowe DA; Ervasti JM
    Free Radic Biol Med; 2018 Dec; 129():364-371. PubMed ID: 30312761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points.
    Capogrosso RF; Mantuano P; Cozzoli A; Sanarica F; Massari AM; Conte E; Fonzino A; Giustino A; Rolland JF; Quaranta A; De Bellis M; Camerino GM; Grange RW; De Luca A
    J Appl Physiol (1985); 2017 Apr; 122(4):828-843. PubMed ID: 28057817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-bone interactions in dystrophin-deficient and myostatin-deficient mice.
    Montgomery E; Pennington C; Isales CM; Hamrick MW
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):814-22. PubMed ID: 16078270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequence of parvalbumin deficiency in the mdx mouse: histological, biochemical and mechanical phenotype of a new double mutant.
    Raymackers JM; Debaix H; Colson-Van Schoor M; De Backer F; Tajeddine N; Schwaller B; Gailly P; Gillis JM
    Neuromuscul Disord; 2003 Jun; 13(5):376-87. PubMed ID: 12798793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid restitution of contractile dysfunction by synthetic copolymers in dystrophin-deficient single live skeletal muscle fibers.
    Hahn D; Quick JD; Thompson BR; Crabtree A; Hackel BJ; Bates FS; Metzger JM
    Skelet Muscle; 2023 May; 13(1):9. PubMed ID: 37208786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice.
    Schertzer JD; van der Poel C; Shavlakadze T; Grounds MD; Lynch GS
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C161-8. PubMed ID: 17989207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.
    Burns DP; Rowland J; Canavan L; Murphy KH; Brannock M; O'Malley D; O'Halloran KD; Edge D
    Exp Physiol; 2017 Sep; 102(9):1177-1193. PubMed ID: 28665499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice.
    Mueller GM; O'Day T; Watchko JF; Ontell M
    Hum Gene Ther; 2002 Jun; 13(9):1081-90. PubMed ID: 12067441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.