These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33979525)

  • 1. Superconducting Sr
    Kim J; Mun J; Palomares García CM; Kim B; Perry RS; Jo Y; Im H; Lee HG; Ko EK; Chang SH; Chung SB; Kim M; Robinson JWA; Yonezawa S; Maeno Y; Wang L; Noh TW
    Nano Lett; 2021 May; 21(10):4185-4192. PubMed ID: 33979525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect Engineering in A
    Kim J; Kim Y; Mun J; Choi W; Chang Y; Kim JR; Gil B; Lee JH; Hahn S; Kim H; Chang SH; Lee GD; Kim M; Kim C; Noh TW
    Small Methods; 2022 Nov; 6(11):e2200880. PubMed ID: 36250995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Ruddlesden-Popper Faults and Their Effect on the Magnetic Properties in Pr
    Jing HM; Cheng S; Mi SB; Lu L; Liu M; Cheng SD; Jia CL
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1428-1433. PubMed ID: 29250959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying Configurational Complexity to the 2D Ruddlesden-Popper Crystal Structure.
    Zhang W; Mazza AR; Skoropata E; Mukherjee D; Musico B; Zhang J; Keppens VM; Zhang L; Kisslinger K; Stavitski E; Brahlek M; Freeland JW; Lu P; Ward TZ
    ACS Nano; 2020 Oct; 14(10):13030-13037. PubMed ID: 32931257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally Stable Sr
    Takahashi R; Lippmaa M
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21314-21321. PubMed ID: 28581286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation mechanism of Ruddlesden-Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO
    Xu C; Du H; van der Torren AJ; Aarts J; Jia CL; Dittmann R
    Sci Rep; 2016 Dec; 6():38296. PubMed ID: 27922069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic nematicity in Sr
    Wu J; Nair HP; Bollinger AT; He X; Robinson I; Schreiber NJ; Shen KM; Schlom DG; Božović I
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10654-10659. PubMed ID: 32366660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intergrowth between the Oxynitride Perovskite SrTaO
    Suemoto Y; Masubuchi Y; Nagamine Y; Matsutani A; Shibahara T; Yamazaki K; Kikkawa S
    Inorg Chem; 2018 Aug; 57(15):9086-9095. PubMed ID: 30010331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on superconducting properties of CeIrIn
    Kang JH; Kim J; Park TB; Choi WS; Park S; Park T
    J Phys Condens Matter; 2022 Sep; 34(45):. PubMed ID: 36055248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells.
    Liu P; Han N; Wang W; Ran R; Zhou W; Shao Z
    Adv Mater; 2021 Mar; 33(10):e2002582. PubMed ID: 33511702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic mapping of Ruddlesden-Popper faults in transparent conducting BaSnO3-based thin films.
    Wang WY; Tang YL; Zhu YL; Suriyaprakash J; Xu YB; Liu Y; Gao B; Cheong SW; Ma XL
    Sci Rep; 2015 Nov; 5():16097. PubMed ID: 26526665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Superconductivity in FeSe Thin Films via Magnesium Doping.
    Qiu W; Ma Z; Liu Y; Shahriar Al Hossain M; Wang X; Cai C; Dou SX
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7891-6. PubMed ID: 26955971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic Evidence of a Dimensionality-Induced Metal-to-Insulator Transition in the Ruddlesden-Popper La
    Di Pietro P; Golalikhani M; Wijesekara K; Chaluvadi SK; Orgiani P; Xi X; Lupi S; Perucchi A
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6813-6819. PubMed ID: 33497183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.
    Stone G; Ophus C; Birol T; Ciston J; Lee CH; Wang K; Fennie CJ; Schlom DG; Alem N; Gopalan V
    Nat Commun; 2016 Aug; 7():12572. PubMed ID: 27578622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.
    Yu Y; Zhang D; Yang P
    Nano Lett; 2017 Sep; 17(9):5489-5494. PubMed ID: 28796526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films.
    Molatta S; Haindl S; Trommler S; Schulze M; Wurmehl S; Hühne R
    Sci Rep; 2015 Nov; 5():16334. PubMed ID: 26548645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition between antiferromagnetism and ferromagnetism in Sr2RuO4 probed by Mn and Co doping.
    Ortmann JE; Liu JY; Hu J; Zhu M; Peng J; Matsuda M; Ke X; Mao ZQ
    Sci Rep; 2013 Oct; 3():2950. PubMed ID: 24126684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-Scale Mapping and Quantification of Local Ruddlesden-Popper Phase Variations.
    Fleck EE; Barone MR; Nair HP; Schreiber NJ; Dawley NM; Schlom DG; Goodge BH; Kourkoutis LF
    Nano Lett; 2022 Dec; 22(24):10095-10101. PubMed ID: 36473700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Lattice Strain on the Formation of Ruddlesden-Popper Faults in Heteroepitaxial LaNiO
    Bak J; Bae HB; Oh C; Son J; Chung SY
    J Phys Chem Lett; 2020 Sep; 11(17):7253-7260. PubMed ID: 32677839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La
    Meyer TL; Jacobs R; Lee D; Jiang L; Freeland JW; Sohn C; Egami T; Morgan D; Lee HN
    Nat Commun; 2018 Jan; 9(1):92. PubMed ID: 29311690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.