These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 33979552)
21. The role of lipid-based drug delivery systems for enhancing solubility of highly selective antiviral agent acyclovir. Kazi M; Al-Amri KA; Alanazi FK Pharm Dev Technol; 2017 May; 22(3):312-321. PubMed ID: 26458371 [TBL] [Abstract][Full Text] [Related]
22. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Tayel SA; El-Nabarawi MA; Tadros MI; Abd-Elsalam WH Int J Pharm; 2013 Feb; 443(1-2):293-305. PubMed ID: 23333217 [TBL] [Abstract][Full Text] [Related]
23. Enhancement in corneal permeability of riboflavin using cyclodextrin derivates complexes as a previous step to transepithelial cross-linking. Conde Penedo A; Díaz Tomé V; Fernández Ferreiro A; González Barcia M; Otero Espinar FJ Eur J Pharm Biopharm; 2021 May; 162():12-22. PubMed ID: 33667681 [TBL] [Abstract][Full Text] [Related]
24. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Hao J; Wang X; Bi Y; Teng Y; Wang J; Li F; Li Q; Zhang J; Guo F; Liu J Colloids Surf B Biointerfaces; 2014 Feb; 114():111-20. PubMed ID: 24176890 [TBL] [Abstract][Full Text] [Related]
25. Formulation of acyclovir-loaded solid lipid nanoparticles: 2. Brain targeting and pharmacokinetic study. El-Gizawy SA; El-Maghraby GM; Hedaya AA Pharm Dev Technol; 2019 Dec; 24(10):1299-1307. PubMed ID: 31507245 [TBL] [Abstract][Full Text] [Related]
27. Conjunctival and corneal tolerability assessment of ocular naltrexone niosomes and their ingredients on the hen's egg chorioallantoic membrane and excised bovine cornea models. Abdelkader H; Ismail S; Hussein A; Wu Z; Al-Kassas R; Alany RG Int J Pharm; 2012 Aug; 432(1-2):1-10. PubMed ID: 22575752 [TBL] [Abstract][Full Text] [Related]
28. Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Giannavola C; Bucolo C; Maltese A; Paolino D; Vandelli MA; Puglisi G; Lee VH; Fresta M Pharm Res; 2003 Apr; 20(4):584-90. PubMed ID: 12739765 [TBL] [Abstract][Full Text] [Related]
29. Development of a Novel Polymeric Nanocomposite Complex for Drugs with Low Bioavailability. Sithole MN; Choonara YE; du Toit LC; Kumar P; Marimuthu T; Kondiah PPD; Pillay V AAPS PharmSciTech; 2018 Jan; 19(1):303-314. PubMed ID: 28717975 [TBL] [Abstract][Full Text] [Related]
30. Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Majumdar S; Hippalgaonkar K; Repka MA Int J Pharm; 2008 Feb; 348(1-2):175-8. PubMed ID: 17897799 [TBL] [Abstract][Full Text] [Related]
31. Ocular pharmacokinetics of acyclovir amino acid ester prodrugs in the anterior chamber: evaluation of their utility in treating ocular HSV infections. Katragadda S; Gunda S; Hariharan S; Mitra AK Int J Pharm; 2008 Jul; 359(1-2):15-24. PubMed ID: 18472234 [TBL] [Abstract][Full Text] [Related]
32. Galactose decorated PLGA nanoparticles for hepatic delivery of acyclovir. Gupta S; Agarwal A; Gupta NK; Saraogi G; Agrawal H; Agrawal GP Drug Dev Ind Pharm; 2013 Dec; 39(12):1866-73. PubMed ID: 22397550 [TBL] [Abstract][Full Text] [Related]
33. Transcorneal permeation of L- and D-aspartate ester prodrugs of acyclovir: delineation of passive diffusion versus transporter involvement. Majumdar S; Hingorani T; Srirangam R; Gadepalli RS; Rimoldi JM; Repka MA Pharm Res; 2009 May; 26(5):1261-9. PubMed ID: 18839288 [TBL] [Abstract][Full Text] [Related]
34. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Anand BS; Mitra AK Pharm Res; 2002 Aug; 19(8):1194-202. PubMed ID: 12240946 [TBL] [Abstract][Full Text] [Related]
35. Influence of freeze-drying and γ-irradiation in preclinical studies of flurbiprofen polymeric nanoparticles for ocular delivery using d-(+)-trehalose and polyethylene glycol. Ramos Yacasi GR; García López ML; Espina García M; Parra Coca A; Calpena Campmany AC Int J Nanomedicine; 2016; 11():4093-106. PubMed ID: 27601897 [TBL] [Abstract][Full Text] [Related]
36. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity. Yang Q; Liu S; Gu Y; Tang X; Wang T; Wu J; Liu J Int J Nanomedicine; 2019; 14():3955-3966. PubMed ID: 31239665 [No Abstract] [Full Text] [Related]
37. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole. Samimi MS; Mahboobian MM; Mohammadi M Hum Exp Toxicol; 2021 Dec; 40(12):2039-2047. PubMed ID: 34036827 [TBL] [Abstract][Full Text] [Related]
38. Preparation and in vitro and in vivo Study of Asiaticoside-Loaded Nanoemulsions and Nanoemulsions-Based Gels for Transdermal Delivery. Li H; Peng Q; Guo Y; Wang X; Zhang L Int J Nanomedicine; 2020; 15():3123-3136. PubMed ID: 32440114 [TBL] [Abstract][Full Text] [Related]