These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33979748)

  • 21. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes, containing water molecules.
    Bystrov VS; Coutinho J; Zelenovskiy PS; Nuraeva AS; Kopyl S; Filippov SV; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2020 Nov; 26(11):326. PubMed ID: 33140163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.
    Chen J; Qin S; Wu X; Chu AP
    ACS Nano; 2016 Jan; 10(1):832-8. PubMed ID: 26654935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capillary Force-Driven, Hierarchical Co-Assembly of Dandelion-Like Peptide Microstructures.
    Wang Y; Huang R; Qi W; Xie Y; Wang M; Su R; He Z
    Small; 2015 Jun; 11(24):2893-902. PubMed ID: 25759325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Kinetics, Thermodynamics and Mechanisms of Short Aromatic Peptide Self-Assembly.
    Mason TO; Buell AK
    Adv Exp Med Biol; 2019; 1174():61-112. PubMed ID: 31713197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled-Alignment Patterns of Dipeptide Micro- and Nanofibers.
    Liu X; Danglad-Flores J; Eickelmann S; Sun B; Hao J; Riegler H; Li J
    ACS Nano; 2022 Jul; 16(7):10372-10382. PubMed ID: 35786876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-Scale Assembly of Peptide-Based Hierarchical Nanostructures and Their Antiferroelectric Properties.
    Lee Y; Kim KW; Duong NX; Park H; Park J; Ahn CW; Park IW; Jang SC; Kim DH; Lee M; Chung WJ; Kim TH; Lee H; Heo K
    Small; 2020 Nov; 16(45):e2003986. PubMed ID: 33078539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembly of diphenylalanine peptides on graphene
    Rissanou AN; Keliri A; Arnittali M; Harmandaris V
    Phys Chem Chem Phys; 2020 Dec; 22(47):27645-27657. PubMed ID: 33283818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Solvent Choice on the Self-Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair.
    Mayans E; Ballano G; Sendros J; Font-Bardia M; Campos JL; Puiggalí J; Cativiela C; Alemán C
    Chemphyschem; 2017 Jul; 18(14):1888-1896. PubMed ID: 28374964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly of (boron-dipyrromethane)-diphenylalanine conjugates forming chiral supramolecular materials.
    Karikis K; Butkiewicz A; Folias F; Charalambidis G; Kokotidou C; Charisiadis A; Nikolaou V; Nikoloudakis E; Frelek J; Mitraki A; Coutsolelos AG
    Nanoscale; 2018 Jan; 10(4):1735-1741. PubMed ID: 29308481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transformation of Dipeptide-Based Organogels into Chiral Crystals by Cryogenic Treatment.
    Liu X; Fei J; Wang A; Cui W; Zhu P; Li J
    Angew Chem Int Ed Engl; 2017 Mar; 56(10):2660-2663. PubMed ID: 28140492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly.
    Wang M; Du L; Wu X; Xiong S; Chu PK
    ACS Nano; 2011 Jun; 5(6):4448-54. PubMed ID: 21591732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid.
    Wang J; Shen G; Ma K; Jiao T; Liu K; Yan X
    Phys Chem Chem Phys; 2016 Nov; 18(45):30926-30930. PubMed ID: 27722335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis.
    Bystrov V; Coutinho J; Zelenovskiy P; Nuraeva A; Kopyl S; Zhulyabina O; Tverdislov V
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymorph farming of acetaminophen and sulfathiazole on a chip.
    Lee T; Hung ST; Kuo CS
    Pharm Res; 2006 Nov; 23(11):2542-55. PubMed ID: 16969701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cation-based approach to morphological diversity of diphenylalanine dipeptide structures.
    Erdoğan H
    Soft Matter; 2021 May; 17(20):5221-5230. PubMed ID: 33949599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Opal-like Multicolor Appearance of Self-Assembled Photonic Array.
    Arnon ZA; Pinotsi D; Schmidt M; Gilead S; Guterman T; Sadhanala A; Ahmad S; Levin A; Walther P; Kaminski CF; Fändrich M; Kaminski Schierle GS; Adler-Abramovich L; Shimon LJW; Gazit E
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20783-20789. PubMed ID: 29842782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Water Self-Diffusion in Diphenylalanine Peptide Nanotubes.
    Zelenovskiy PS; Domingues EM; Slabov V; Kopyl S; Ugolkov VL; Figueiredo FML; Kholkin AL
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27485-27492. PubMed ID: 32463652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.