These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33979933)

  • 1. Removal of type-A, type-B, and borderline metals from contaminated soils using zero valent iron and magnetic separation technology: A predictive approach for metal resources recovery.
    Alhadidi QA; Zhou Z; Quiñones Deliz KY; Greenslet HY; Bonzongo JJ
    Chemosphere; 2021 Jul; 274():129980. PubMed ID: 33979933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATE™ studies.
    Feng N; Ghoveisi H; Bitton G; Bonzongo JJ
    Environ Pollut; 2016 Dec; 219():9-18. PubMed ID: 27661723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous remediation of co-contaminated soil by ball-milled zero-valent iron coupled with persulfate oxidation.
    Xue C; Yi Y; Zhou L; Fang Z
    J Environ Manage; 2023 Aug; 340():118004. PubMed ID: 37119628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero valent iron or Fe
    Duan L; Wang Q; Li J; Wang F; Yang H; Guo B; Hashimoto Y
    Environ Pollut; 2022 Sep; 308():119702. PubMed ID: 35787422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses.
    Li Z; Wang L; Wu J; Xu Y; Wang F; Tang X; Xu J; Ok YS; Meng J; Liu X
    Environ Pollut; 2020 May; 260():114098. PubMed ID: 32041084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation.
    Li J; Zhang Y; Wang F; Wang L; Liu J; Hashimoto Y; Hosomi M
    Sci Total Environ; 2021 May; 768():144521. PubMed ID: 33450681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilisation of metal(loid)s in two contaminated soils using micro and nano zerovalent iron particles: Evaluating the long-term stability.
    Danila V; Kumpiene J; Kasiuliene A; Vasarevičius S
    Chemosphere; 2020 Jun; 248():126054. PubMed ID: 32023510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.
    Hseu ZY; Huang YT; Hsi HC
    J Air Waste Manag Assoc; 2014 Sep; 64(9):1013-20. PubMed ID: 25282998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal immobilization and nitrate reduction in a contaminated soil amended with zero-valent iron (Fe
    Houben D; Sonnet P
    Ecotoxicol Environ Saf; 2020 Sep; 201():110868. PubMed ID: 32563163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of zero-valent Fe for curbing toxic emissions after EDTA-based washing of Pb, Zn and Cd contaminated calcareous and acidic soil.
    Gluhar S; Jez E; Lestan D
    Chemosphere; 2019 Jan; 215():482-489. PubMed ID: 30340156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of contaminated soils by enhanced nanoscale zero valent iron.
    Jiang D; Zeng G; Huang D; Chen M; Zhang C; Huang C; Wan J
    Environ Res; 2018 May; 163():217-227. PubMed ID: 29459304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EDDS enhanced PCB degradation and heavy metals stabilization in co-contaminated soils by ZVI under aerobic condition.
    Cao M; Tu S; Xiong S; Zhou H; Chen J; Lu X
    J Hazard Mater; 2018 Sep; 358():265-272. PubMed ID: 29990814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay.
    Xu C; Qi J; Yang W; Chen Y; Yang C; He Y; Wang J; Lin A
    Sci Total Environ; 2019 Oct; 686():476-483. PubMed ID: 31185396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.
    Zhai X; Li Z; Huang B; Luo N; Huang M; Zhang Q; Zeng G
    Sci Total Environ; 2018 Sep; 635():92-99. PubMed ID: 29660731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].
    Fang XB; Shi H; Liao XF; Lou Z; Zhou LY; Yu HX; Yao L; Sun LP
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1883-91. PubMed ID: 26572046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of biochar and zero-valent iron for in-situ remediation of chromated copper arsenate contaminated soil.
    Frick H; Tardif S; Kandeler E; Holm PE; Brandt KK
    Sci Total Environ; 2019 Mar; 655():414-422. PubMed ID: 30472643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of lead from two polluted soils by magnetic wheat straw biochars.
    Gong H; Chi J; Ding Z; Zhang F; Huang J
    Ecotoxicol Environ Saf; 2020 Dec; 205():111132. PubMed ID: 32836155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.
    Vítková M; Rákosová S; Michálková Z; Komárek M
    J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids.
    Cao Y; Zhang S; Zhong Q; Wang G; Xu X; Li T; Wang L; Jia Y; Li Y
    Ecotoxicol Environ Saf; 2018 Oct; 162():464-473. PubMed ID: 30015193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.