BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33980137)

  • 1. CancerSiamese: one-shot learning for predicting primary and metastatic tumor types unseen during model training.
    Mostavi M; Chiu YC; Chen Y; Huang Y
    BMC Bioinformatics; 2021 May; 22(1):244. PubMed ID: 33980137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional neural network models for cancer type prediction based on gene expression.
    Mostavi M; Chiu YC; Huang Y; Chen Y
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):44. PubMed ID: 32241303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-label zero-shot learning with graph convolutional networks.
    Ou G; Yu G; Domeniconi C; Lu X; Zhang X
    Neural Netw; 2020 Dec; 132():333-341. PubMed ID: 32977278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a Neural Network Whole Transcriptome-Based Pan-Cancer Method for Diagnosis of Primary and Metastatic Cancers.
    Grewal JK; Tessier-Cloutier B; Jones M; Gakkhar S; Ma Y; Moore R; Mungall AJ; Zhao Y; Taylor MD; Gelmon K; Lim H; Renouf D; Laskin J; Marra M; Yip S; Jones SJM
    JAMA Netw Open; 2019 Apr; 2(4):e192597. PubMed ID: 31026023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-augmentation: Generalizing deep networks to unseen classes for few-shot learning.
    Seo JW; Jung HG; Lee SW
    Neural Netw; 2021 Jun; 138():140-149. PubMed ID: 33652370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-Transfer Learning Through Hard Tasks.
    Sun Q; Liu Y; Chen Z; Chua TS; Schiele B
    IEEE Trans Pattern Anal Mach Intell; 2022 Mar; 44(3):1443-1456. PubMed ID: 32822293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A meta-learning approach to improving radiation response prediction in cancers.
    Zhang Y; Qiu L; Ren Y; Cheng Z; Li L; Yao S; Zhang C; Luo Z; Lu H
    Comput Biol Med; 2022 Nov; 150():106163. PubMed ID: 37070625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
    Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data.
    López-García G; Jerez JM; Franco L; Veredas FJ
    PLoS One; 2020; 15(3):e0230536. PubMed ID: 32214348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning.
    Kakati T; Bhattacharyya DK; Kalita JK; Norden-Krichmar TM
    BMC Bioinformatics; 2022 Jan; 23(1):17. PubMed ID: 34991439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Attention Relation Network With Fine-Tuning for Few-Shot EEG Motor Imagery Classification.
    An S; Kim S; Chikontwe P; Park SH
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37379192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducing the invention of a named reaction: zero-shot prediction of unseen chemical reactions.
    Su A; Wang X; Wang L; Zhang C; Wu Y; Wu X; Zhao Q; Duan H
    Phys Chem Chem Phys; 2022 May; 24(17):10280-10291. PubMed ID: 35437562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HFM: A Hybrid Feature Model Based on Conditional Auto Encoders for Zero-Shot Learning.
    Al Machot F; Ullah M; Ullah H
    J Imaging; 2022 Jun; 8(6):. PubMed ID: 35735970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transductive Relation-Propagation With Decoupling Training for Few-Shot Learning.
    Ma Y; Bai S; Liu W; Wang S; Yu Y; Bai X; Liu X; Wang M
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6652-6664. PubMed ID: 34138714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.