BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33980373)

  • 1. A Simple and Low-Cost Method for Fabrication of Polydimethylsiloxane Microfludic Chips.
    Sun L; Zhang L; Yang X; Zhang B; Yin Z
    J Nanosci Nanotechnol; 2021 Nov; 21(11):5635-5641. PubMed ID: 33980373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Microfluidic Chip Fabrication Technique by Laser Erosion and Sticky Tape Assist Bonding Technique.
    Yin Z; Cheng E; Zou H
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4082-4086. PubMed ID: 29442746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irreversible Bonding of Polydimethylsiloxane-Lithium Niobate using Oxygen Plasma Modification for Surface Acoustic Wave based Microfluidic Application: Theory and Experiment.
    He C; Yao J; Yang C; Wang J; Sun B; Liao G; Shi T; Liu Z
    Small Methods; 2024 May; 8(5):e2301321. PubMed ID: 38054603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.
    Hu C; Lin S; Li W; Sun H; Chen Y; Chan CW; Leung CH; Ma DL; Wu H; Ren K
    Lab Chip; 2016 Oct; 16(20):3909-3918. PubMed ID: 27722382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components.
    Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M
    Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Prototyping of Multi-Functional and Biocompatible Parafilm
    Wei Y; Wang T; Wang Y; Zeng S; Ho YP; Ho HP
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bonding Strength of a Glass Microfluidic Device Fabricated by Femtosecond Laser Micromachining and Direct Welding.
    Kim S; Kim J; Joung YH; Choi J; Koo C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30513880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of microfluidic devices containing patterned microwell arrays.
    Henley WH; Dennis PJ; Ramsey JM
    Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An equipment-free polydimethylsiloxane microfluidic spotter for fabrication of microarrays.
    Tang T; Li G; Jia C; Gao K; Zhao J
    Biomicrofluidics; 2014 Mar; 8(2):026501. PubMed ID: 24803969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma free reversible and irreversible microfluidic bonding.
    Chu M; Nguyen TT; Lee EK; Morival JL; Khine M
    Lab Chip; 2017 Jan; 17(2):267-273. PubMed ID: 27990540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.
    Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC
    Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues.
    Zhou Z; Chen D; Wang X; Jiang J
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption.
    Sano E; Mori C; Matsuoka N; Ozaki Y; Yagi K; Wada A; Tashima K; Yamasaki S; Tanabe K; Yano K; Torisawa YS
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-cost and versatile integration of microwire electrodes and optical waveguides into silicone elastomeric devices using modified xurographic methods.
    Liu J; Mahony JB; Selvaganapathy PR
    Microsyst Nanoeng; 2017; 3():17040. PubMed ID: 31057875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.