BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 3398047)

  • 1. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds.
    Roseman MA
    J Mol Biol; 1988 Apr; 200(3):513-22. PubMed ID: 3398047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides.
    Wimley WC; Creamer TP; White SH
    Biochemistry; 1996 Apr; 35(16):5109-24. PubMed ID: 8611495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation thermodynamics of amino acid side chains on a short peptide backbone.
    Hajari T; van der Vegt NF
    J Chem Phys; 2015 Apr; 142(14):144502. PubMed ID: 25877585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration free energies of amino acids: why side chain analog data are not enough.
    König G; Boresch S
    J Phys Chem B; 2009 Jul; 113(26):8967-74. PubMed ID: 19507836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide backbone effect on hydration free energies of amino acid side chains.
    Hajari T; van der Vegt NF
    J Phys Chem B; 2014 Nov; 118(46):13162-8. PubMed ID: 25338222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales.
    Mant CT; Kovacs JM; Kim HM; Pollock DD; Hodges RS
    Biopolymers; 2009; 92(6):573-95. PubMed ID: 19795449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of solvent polarity in the free energy of transfer of amino acid side chains from water to organic solvents.
    Damodaran S; Song KB
    J Biol Chem; 1986 Jun; 261(16):7220-2. PubMed ID: 3711086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes.
    Liu Y; Bolen DW
    Biochemistry; 1995 Oct; 34(39):12884-91. PubMed ID: 7548045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive transfer free energies of the peptide backbone unit that are independent of the model compound and the choice of concentration scale.
    Auton M; Bolen DW
    Biochemistry; 2004 Feb; 43(5):1329-42. PubMed ID: 14756570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversed-phase liquid chromatography as a tool in the determination of the hydrophilicity/hydrophobicity of amino acid side-chains at a ligand-receptor interface in the presence of different aqueous environments. II. Effect of varying peptide ligand hydrophobicity.
    Mant CT; Hodges RS
    J Chromatogr A; 2002 Sep; 972(1):61-75. PubMed ID: 12395947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid side-chain partition energies and distribution of residues in soluble proteins.
    Guy HR
    Biophys J; 1985 Jan; 47(1):61-70. PubMed ID: 3978191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational characteristics of peptides and unanticipated results from crystal structure analyses.
    Karle IL
    Biopolymers; 1989 Jan; 28(1):1-14. PubMed ID: 2720096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The solubility of N-acetyl amino acid amides in organic acid and alcohol solutions: Mechanistic insight into structural protein solubilization.
    Hirano A; Wada M; Sato TK; Kameda T
    Int J Biol Macromol; 2021 May; 178():607-615. PubMed ID: 33631265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of the membrane interface as the reference state for membrane protein stability.
    Ulmschneider JP; Smith JC; White SH; Ulmschneider MB
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2539-2548. PubMed ID: 30293965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hydrophobicity scale for the lipid bilayer barrier domain from peptide permeabilities: nonadditivities in residue contributions.
    Mayer PT; Xiang TX; Niemi R; Anderson BD
    Biochemistry; 2003 Feb; 42(6):1624-36. PubMed ID: 12578376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions.
    Ladokhin AS; White SH
    J Mol Biol; 2001 Jun; 309(3):543-52. PubMed ID: 11397078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes.
    Abraham T; Prenner EJ; Lewis RN; Mant CT; Keller S; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 2014 May; 1838(5):1420-9. PubMed ID: 24388950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation.
    Wang A; Bolen DW
    Biochemistry; 1997 Jul; 36(30):9101-8. PubMed ID: 9230042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.