BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33980963)

  • 1. Multiview deconvolution approximation multiphoton microscopy of tissues and zebrafish larvae.
    Kapsokalyvas D; Rosas R; Janssen RWA; Vanoevelen JM; Nabben M; Strauch M; Merhof D; van Zandvoort MAMJ
    Sci Rep; 2021 May; 11(1):10160. PubMed ID: 33980963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An advanced optical clearing protocol allows label-free detection of tissue necrosis
    Schneidereit D; Bröllochs A; Ritter P; Kreiß L; Mokhtari Z; Beilhack A; Krönke G; Ackermann JA; Faas M; Grüneboom A; Schürmann S; Friedrich O
    Theranostics; 2021; 11(6):2876-2891. PubMed ID: 33456578
    [No Abstract]   [Full Text] [Related]  

  • 3. Three dimensional multiphoton imaging of fresh and whole mount developing mouse mammary glands.
    Johnson MD; Mueller SC
    BMC Cancer; 2013 Aug; 13():373. PubMed ID: 23919456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. zWEDGI: Wounding and Entrapment Device for Imaging Live Zebrafish Larvae.
    Huemer K; Squirrell JM; Swader R; LeBert DC; Huttenlocher A; Eliceiri KW
    Zebrafish; 2017 Feb; 14(1):42-50. PubMed ID: 27676647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast objective coupled planar illumination microscopy.
    Greer CJ; Holy TE
    Nat Commun; 2019 Oct; 10(1):4483. PubMed ID: 31578369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the penetration depth in multiphoton excitation laser scanning microscopy.
    McConnell G
    J Biomed Opt; 2006; 11(5):054020. PubMed ID: 17092169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrahedral serial multiview microscopy and image fusion for improved resolution and extent in stained zebrafish embryos.
    Kroll JB; Cha A; Oyler-Yaniv A; Lambert T; Swinburne IA; Murphy A; Megason SG
    Dev Dyn; 2024 Jul; 253(7):690-704. PubMed ID: 38131490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scattering suppression and confocal detection in multifocal multiphoton microscopy.
    Martini J; Andresen V; Anselmetti D
    J Biomed Opt; 2007; 12(3):034010. PubMed ID: 17614718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid multiphoton and optoacoustic microscope.
    Tserevelakis GJ; Soliman D; Omar M; Ntziachristos V
    Opt Lett; 2014 Apr; 39(7):1819-22. PubMed ID: 24686613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions.
    Soulet D; Lamontagne-Proulx J; Aubé B; Davalos D
    J Microsc; 2020 Apr; 278(1):3-17. PubMed ID: 32072642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured illumination microscopy and image scanning microscopy: a review and comparison of imaging properties.
    Sheppard CJR
    Philos Trans A Math Phys Eng Sci; 2021 Jun; 379(2199):20200154. PubMed ID: 33896206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-animal functional and developmental imaging with isotropic spatial resolution.
    Chhetri RK; Amat F; Wan Y; Höckendorf B; Lemon WC; Keller PJ
    Nat Methods; 2015 Dec; 12(12):1171-8. PubMed ID: 26501515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier Multiplexed Fluorescence Lifetime Imaging.
    Peng L
    Methods Mol Biol; 2021; 2350():157-172. PubMed ID: 34331285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.
    Roberts MS; Dancik Y; Prow TW; Thorling CA; Lin LL; Grice JE; Robertson TA; König K; Becker W
    Eur J Pharm Biopharm; 2011 Apr; 77(3):469-88. PubMed ID: 21256962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chapter 5: Imaging in depth: controversies and opportunities.
    O'Malley D
    Methods Cell Biol; 2008; 89():95-128. PubMed ID: 19118674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy.
    Yu JY; Kuo CH; Holland DB; Chen Y; Ouyang M; Blake GA; Zadoyan R; Guo CL
    J Biomed Opt; 2011 Nov; 16(11):116009. PubMed ID: 22112114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Cell Tracking Using Two-Photon Microscopy.
    Malide D
    Methods Mol Biol; 2016; 1444():109-22. PubMed ID: 27283422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.
    Lee DR; Kim YD; Gweon DG; Yoo H
    Opt Express; 2013 Jul; 21(15):17839-48. PubMed ID: 23938657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar.
    Lo W; Sun Y; Lin SJ; Jee SH; Dong CY
    J Biomed Opt; 2005; 10(3):034006. PubMed ID: 16229650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy.
    Gugel H; Bewersdorf J; Jakobs S; Engelhardt J; Storz R; Hell SW
    Biophys J; 2004 Dec; 87(6):4146-52. PubMed ID: 15377532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.