BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33981295)

  • 1. Strategies for Bacteriophage T5 Mutagenesis: Expanding the Toolbox for Phage Genome Engineering.
    Ramirez-Chamorro L; Boulanger P; Rossier O
    Front Microbiol; 2021; 12():667332. PubMed ID: 33981295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 3. [Editing of Phage Genomes - Recombineering-Assisted SpCas9 Modification of Model Coliphages T7, T5, and T3].
    Isaev A; Andriianov A; Znobishcheva E; Zorin E; Morozova N; Severinov K
    Mol Biol (Mosk); 2022; 56(6):883. PubMed ID: 36475474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages.
    Martel B; Moineau S
    Nucleic Acids Res; 2014 Aug; 42(14):9504-13. PubMed ID: 25063295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
    Kiro R; Shitrit D; Qimron U
    RNA Biol; 2014; 11(1):42-4. PubMed ID: 24457913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
    Wu X; Zhu J; Tao P; Rao VB
    mBio; 2021 Jun; 12(3):e0136121. PubMed ID: 34154416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
    Lemay ML; Tremblay DM; Moineau S
    ACS Synth Biol; 2017 Jul; 6(7):1351-1358. PubMed ID: 28324650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies.
    Strotskaya A; Savitskaya E; Metlitskaya A; Morozova N; Datsenko KA; Semenova E; Severinov K
    Nucleic Acids Res; 2017 Feb; 45(4):1946-1957. PubMed ID: 28130424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3.
    Schroven K; Voet M; Lavigne R; Hendrix H
    Methods Mol Biol; 2024; 2793():113-128. PubMed ID: 38526727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9.
    Tao P; Wu X; Tang WC; Zhu J; Rao V
    ACS Synth Biol; 2017 Oct; 6(10):1952-1961. PubMed ID: 28657724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering.
    Box AM; McGuffie MJ; O'Hara BJ; Seed KD
    J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
    Bari SMN; Walker FC; Cater K; Aslan B; Hatoum-Aslan A
    ACS Synth Biol; 2017 Dec; 6(12):2316-2325. PubMed ID: 28885820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Engineering of Therapeutic Phages Using Type III CRISPR-Cas Systems.
    Hill CM; Hatoum-Aslan A
    Methods Mol Biol; 2024; 2734():279-299. PubMed ID: 38066376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient, scarless, selection-free technology for phage engineering.
    Goren MG; Mahata T; Qimron U
    RNA Biol; 2023 Jan; 20(1):830-835. PubMed ID: 37846029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7.
    Grigonyte AM; Harrison C; MacDonald PR; Montero-Blay A; Tridgett M; Duncan J; Sagona AP; Constantinidou C; Jaramillo A; Millard A
    Viruses; 2020 Feb; 12(2):. PubMed ID: 32050613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-based engineering of phages for in situ bacterial base editing.
    Nethery MA; Hidalgo-Cantabrana C; Roberts A; Barrangou R
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2206744119. PubMed ID: 36343261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage genome engineering with CRISPR-Cas13a.
    Guan J; Oromí-Bosch A; Mendoza SD; Karambelkar S; Berry JD; Bondy-Denomy J
    Nat Microbiol; 2022 Dec; 7(12):1956-1966. PubMed ID: 36316452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.