BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 33981941)

  • 21. Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity.
    Yao L; Swartz DD; Gugino SF; Russell JA; Andreadis ST
    Tissue Eng; 2005; 11(7-8):991-1003. PubMed ID: 16144435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts.
    Ozdemir S; Yalcin-Enis I; Yalcinkaya B; Yalcinkaya F
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models.
    Phang SJ; Basak S; Teh HX; Packirisamy G; Fauzi MB; Kuppusamy UR; Neo YP; Looi ML
    ACS Biomater Sci Eng; 2022 Aug; 8(8):3220-3241. PubMed ID: 35861577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface Modification by Nanobiomaterials for Vascular Tissue Engineering Applications.
    Hung HS; Hsu SH
    Curr Med Chem; 2020; 27(10):1634-1646. PubMed ID: 30215329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications.
    Elkhoury K; Morsink M; Sanchez-Gonzalez L; Kahn C; Tamayol A; Arab-Tehrany E
    Bioact Mater; 2021 Nov; 6(11):3904-3923. PubMed ID: 33997485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translational tissue-engineered vascular grafts: From bench to bedside.
    West-Livingston L; Lim JW; Lee SJ
    Biomaterials; 2023 Nov; 302():122322. PubMed ID: 37713761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications.
    Chandra P; Atala A
    Clin Sci (Lond); 2019 May; 133(9):1115-1135. PubMed ID: 31088895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering biological-based vascular grafts using a pulsatile bioreactor.
    Huang AH; Niklason LE
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21694696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofabrication strategies for 3D in vitro models and regenerative medicine.
    Moroni L; Burdick JA; Highley C; Lee SJ; Morimoto Y; Takeuchi S; Yoo JJ
    Nat Rev Mater; 2018 May; 3(5):21-37. PubMed ID: 31223488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design considerations for engineering 3D models to study vascular pathologies in vitro.
    Lust ST; Shanahan CM; Shipley RJ; Lamata P; Gentleman E
    Acta Biomater; 2021 Sep; 132():114-128. PubMed ID: 33652164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomaterials for vascular tissue engineering.
    Ravi S; Chaikof EL
    Regen Med; 2010 Jan; 5(1):107-20. PubMed ID: 20017698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomaterials and Advanced Biofabrication Techniques in hiPSCs Based Neuromyopathic Disease Modeling.
    Sun J; Ma X; Chu HT; Feng B; Tuan RS; Jiang Y
    Front Bioeng Biotechnol; 2019; 7():373. PubMed ID: 31850331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. (Photo-)crosslinkable gelatin derivatives for biofabrication applications.
    Van Hoorick J; Tytgat L; Dobos A; Ottevaere H; Van Erps J; Thienpont H; Ovsianikov A; Dubruel P; Van Vlierberghe S
    Acta Biomater; 2019 Oct; 97():46-73. PubMed ID: 31344513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant-Derived Biomaterials and Their Potential in Cardiac Tissue Repair.
    Dai Y; Qiao K; Li D; Isingizwe P; Liu H; Liu Y; Lim K; Woodfield T; Liu G; Hu J; Yuan J; Tang J; Cui X
    Adv Healthc Mater; 2023 Aug; 12(20):e2202827. PubMed ID: 36977522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofabrication: a 21st century manufacturing paradigm.
    Mironov V; Trusk T; Kasyanov V; Little S; Swaja R; Markwald R
    Biofabrication; 2009 Jun; 1(2):022001. PubMed ID: 20811099
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Keshavarzian M; Meyer CA; Hayenga HN
    Tissue Eng Part C Methods; 2019 Nov; 25(11):641-654. PubMed ID: 31392930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biofabricating the vascular tree in engineered bone tissue.
    de Silva L; Bernal PN; Rosenberg A; Malda J; Levato R; Gawlitta D
    Acta Biomater; 2023 Jan; 156():250-268. PubMed ID: 36041651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology.
    Pradhan S; Banda OA; Farino CJ; Sperduto JL; Keller KA; Taitano R; Slater JH
    Adv Healthc Mater; 2020 Apr; 9(8):e1901255. PubMed ID: 32100473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications. Running Title: Fibrin-Agarose Functionalized Scaffolds.
    Blanco-Elices C; España-Guerrero E; Mateu-Sanz M; Sánchez-Porras D; García-García ÓD; Sánchez-Quevedo MDC; Fernández-Valadés R; Alaminos M; Martín-Piedra MÁ; Garzón I
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.