These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition Temperature. Tao L; Varshney V; Li Y J Chem Inf Model; 2021 Nov; 61(11):5395-5413. PubMed ID: 34662106 [TBL] [Abstract][Full Text] [Related]
4. Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers. Pilania G; Iverson CN; Lookman T; Marrone BL J Chem Inf Model; 2019 Dec; 59(12):5013-5025. PubMed ID: 31697891 [TBL] [Abstract][Full Text] [Related]
5. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Kuenneth C; Ramprasad R Nat Commun; 2023 Jul; 14(1):4099. PubMed ID: 37433807 [TBL] [Abstract][Full Text] [Related]
6. Polymer Informatics at Scale with Multitask Graph Neural Networks. Gurnani R; Kuenneth C; Toland A; Ramprasad R Chem Mater; 2023 Feb; 35(4):1560-1567. PubMed ID: 36873627 [TBL] [Abstract][Full Text] [Related]
7. Machine-Learning-Based Predictions of Polymer and Postconsumer Recycled Polymer Properties: A Comprehensive Review. Andraju N; Curtzwiler GW; Ji Y; Kozliak E; Ranganathan P ACS Appl Mater Interfaces; 2022 Sep; 14(38):42771-42790. PubMed ID: 36102317 [TBL] [Abstract][Full Text] [Related]
8. Developing efficient deep learning model for predicting copolymer properties. Himanshu ; Chakraborty K; Patra TK Phys Chem Chem Phys; 2023 Sep; 25(37):25166-25176. PubMed ID: 37712405 [TBL] [Abstract][Full Text] [Related]
9. PI1M: A Benchmark Database for Polymer Informatics. Ma R; Luo T J Chem Inf Model; 2020 Oct; 60(10):4684-4690. PubMed ID: 32986418 [TBL] [Abstract][Full Text] [Related]
10. Predicting Polymers' Glass Transition Temperature by a Chemical Language Processing Model. Chen G; Tao L; Li Y Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34200505 [TBL] [Abstract][Full Text] [Related]
11. Data-Driven Design of Polymer-Based Biomaterials: High-throughput Simulation, Experimentation, and Machine Learning. Patel RA; Webb MA ACS Appl Bio Mater; 2024 Feb; 7(2):510-527. PubMed ID: 36701125 [TBL] [Abstract][Full Text] [Related]
12. Multi-PLI: interpretable multi-task deep learning model for unifying protein-ligand interaction datasets. Hu F; Jiang J; Wang D; Zhu M; Yin P J Cheminform; 2021 Apr; 13(1):30. PubMed ID: 33858485 [TBL] [Abstract][Full Text] [Related]
13. A graph representation of molecular ensembles for polymer property prediction. Aldeghi M; Coley CW Chem Sci; 2022 Sep; 13(35):10486-10498. PubMed ID: 36277616 [TBL] [Abstract][Full Text] [Related]
14. Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients. Varnek A; Gaudin C; Marcou G; Baskin I; Pandey AK; Tetko IV J Chem Inf Model; 2009 Jan; 49(1):133-44. PubMed ID: 19125628 [TBL] [Abstract][Full Text] [Related]
15. Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction. Withnall M; Lindelöf E; Engkvist O; Chen H J Cheminform; 2020 Jan; 12(1):1. PubMed ID: 33430988 [TBL] [Abstract][Full Text] [Related]
16. Augmenting Polymer Datasets by Iterative Rearrangement. Lo S; Seifrid M; Gaudin T; Aspuru-Guzik A J Chem Inf Model; 2023 Jul; 63(14):4266-4276. PubMed ID: 37390494 [TBL] [Abstract][Full Text] [Related]
17. Multi-task learning for the prediction of wind power ramp events with deep neural networks. Dorado-Moreno M; Navarin N; Gutiérrez PA; Prieto L; Sperduti A; Salcedo-Sanz S; Hervás-Martínez C Neural Netw; 2020 Mar; 123():401-411. PubMed ID: 31926464 [TBL] [Abstract][Full Text] [Related]
18. Prevention of Leakage in Machine Learning Prediction for Polymer Composite Properties. Shimakawa H; Kumada A; Sato M J Chem Inf Model; 2024 May; 64(9):3621-3629. PubMed ID: 38642039 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images. Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986 [TBL] [Abstract][Full Text] [Related]
20. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]