These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33982258)

  • 1. Assessment of the Streptomyces-plant system to mitigate the impact of Cr(VI) and lindane in experimental soils.
    Solá MZS; Prado C; Rosa M; Aráoz MVC; Benimeli CS; Polti MA; Alvarez A
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):51217-51231. PubMed ID: 33982258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation.
    Simón Solá MZ; Lovaisa N; Dávila Costa JS; Benimeli CS; Polti MA; Alvarez A
    Chemosphere; 2019 May; 222():679-687. PubMed ID: 30735968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane.
    Aparicio J; Solá MZ; Benimeli CS; Amoroso MJ; Polti MA
    Ecotoxicol Environ Saf; 2015 Jun; 116():34-9. PubMed ID: 25749405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cr(VI) and lindane removal by Streptomyces M7 is improved by maize root exudates.
    Simon Sola MZ; Pérez Visñuk D; Benimeli CS; Polti MA; Alvarez A
    J Basic Microbiol; 2017 Dec; 57(12):1037-1044. PubMed ID: 28940512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies.
    Aparicio JD; Lacalle RG; Artetxe U; Urionabarrenetxea E; Becerril JM; Polti MA; Garbisu C; Soto M
    Environ Res; 2021 Mar; 194():110666. PubMed ID: 33359700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the effectiveness of a bioremediation process in experimental soils polluted with chromium and lindane.
    Aparicio JD; Garcia-Velasco N; Urionabarrenetxea E; Soto M; Álvarez A; Polti MA
    Ecotoxicol Environ Saf; 2019 Oct; 181():255-263. PubMed ID: 31200198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actinobacteria consortium as an efficient biotechnological tool for mixed polluted soil reclamation: Experimental factorial design for bioremediation process optimization.
    Aparicio JD; Raimondo EE; Gil RA; Benimeli CS; Polti MA
    J Hazard Mater; 2018 Jan; 342():408-417. PubMed ID: 28854393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils.
    Baoune H; Aparicio JD; Acuña A; El Hadj-Khelil AO; Sanchez L; Polti MA; Alvarez A
    Ecotoxicol Environ Saf; 2019 Nov; 184():109591. PubMed ID: 31514081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1.
    Polti MA; García RO; Amoroso MJ; Abate CM
    J Basic Microbiol; 2009 Jun; 49(3):285-92. PubMed ID: 19025876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the phytoremediation potential of dominant plant species growing in a chromium salt-producing factory wasteland, China.
    Yan X; Wang J; Song H; Peng Y; Zuo S; Gao T; Duan X; Qin D; Dong J
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7657-7671. PubMed ID: 31889268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of plant-associated bacteria biosensors on plant growth in the presence of hexavalent chromium.
    Francisco R; Branco R; Schwab S; Baldani JI; Morais PV
    World J Microbiol Biotechnol; 2017 Dec; 34(1):12. PubMed ID: 29256050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L.
    Chigbo C; Batty L
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):3051-9. PubMed ID: 24185906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applied of actinobacteria consortia-based bioremediation to restore co-contaminated systems.
    Antezana PE; Colin VL; Bourguignon N; Benimeli CS; Fuentes MS
    Res Microbiol; 2023 May; 174(4):104028. PubMed ID: 36638934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure.
    Morales DK; Ocampo W; Zambrano MM
    J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two plant-hosted whole-cell bacterial biosensors for detection of bioavailable Cr(VI).
    Francisco R; Branco R; Schwab S; Baldani I; Morais PV
    World J Microbiol Biotechnol; 2019 Aug; 35(8):129. PubMed ID: 31376017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.
    Chigbo C
    Bull Environ Contam Toxicol; 2015 Jun; 94(6):777-82. PubMed ID: 25917846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types.
    Raimondo EE; Saez JM; Aparicio JD; Fuentes MS; Benimeli CS
    Chemosphere; 2020 Jan; 238():124512. PubMed ID: 31430718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium(VI) reduction in Streptomyces sp. M7 mediated by a novel Old Yellow Enzyme.
    Sineli PE; Guerrero DS; Alvarez A; Dávila Costa JS
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):5015-5022. PubMed ID: 31044312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation.
    Lacalle RG; Aparicio JD; Artetxe U; Urionabarrenetxea E; Polti MA; Soto M; Garbisu C; Becerril JM
    Heliyon; 2020 Aug; 6(8):e04550. PubMed ID: 32885063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil dynamics of Cr(VI) and responses of Portulaca oleracea L. grown in a Cr(VI)-spiked soil under different nitrogen fertilization regimes.
    Thalassinos G; Nastou E; Petropoulos SA; Antoniadis V
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14469-14478. PubMed ID: 34617214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.