These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33982304)

  • 1. Freezing stress damage and growth viability in Vaccinium macrocarpon Ait. bud structures.
    Villouta C; Workmaster BA; Atucha A
    Physiol Plant; 2021 Aug; 172(4):2238-2250. PubMed ID: 33982304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing stress survival mechanisms in Vaccinium macrocarpon Ait. terminal buds.
    Villouta C; Workmaster BA; Bolivar-Medina J; Sinclair S; Atucha A
    Tree Physiol; 2020 Jun; 40(7):841-855. PubMed ID: 32163157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition of Freezing Tolerance in
    Villouta C; Workmaster BA; Livingston DP; Atucha A
    Front Plant Sci; 2022; 13():891488. PubMed ID: 35599888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized differential thermal analysis sheds light on the effect of temperature on peach floral bud cold hardiness and transition from endo- to ecodormancy.
    Sterle DG; Caspari HW; Minas IS
    Plant Sci; 2023 Oct; 335():111791. PubMed ID: 37451549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray phase contrast imaging of Vitis spp. buds shows freezing pattern and correlation between volume and cold hardiness.
    Kovaleski AP; Londo JP; Finkelstein KD
    Sci Rep; 2019 Oct; 9(1):14949. PubMed ID: 31628356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds.
    Pramsohler M; Neuner G
    Tree Physiol; 2013 Aug; 33(8):807-16. PubMed ID: 23939553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twig pre-harvest temperature significantly influences effective cryopreservation of Vaccinium dormant buds.
    Jenderek MM; Tanner JD; Ambruzs BD; West M; Postman JD; Hummer KE
    Cryobiology; 2017 Feb; 74():154-159. PubMed ID: 27840093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A device for the controlled cooling and freezing of excised plant specimens during magnetic resonance imaging.
    Villouta C; Cox BL; Rauch B; Workmaster BAA; Eliceiri KW; Atucha A
    Plant Methods; 2021 Apr; 17(1):41. PubMed ID: 33849587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the influence of autumnal temperature fluctuations on cold hardiness in different grapevine cultivars: variations across vine age and bud positions.
    Kaya O; Delavar H; Shikanai A; Auwarter C; Hatterman-Valenti H
    Front Plant Sci; 2024; 15():1379328. PubMed ID: 38828219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preanthesis changes in freeze resistance, relative water content, and ovary growth preempt bud phenology and signify dormancy release of sour cherry floral buds.
    Hillmann L; Elsysy M; Goeckeritz C; Hollender C; Rothwell N; Blanke M; Einhorn T
    Planta; 2021 Sep; 254(4):74. PubMed ID: 34529136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic thermal time model of cold hardiness for dormant grapevine buds.
    Ferguson JC; Tarara JM; Mills LJ; Grove GG; Keller M
    Ann Bot; 2011 Mar; 107(3):389-96. PubMed ID: 21212090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing.
    Ishikawa M; Ishikawa M; Toyomasu T; Aoki T; Price WS
    Front Plant Sci; 2015; 6():149. PubMed ID: 25859249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chill unit accumulation and temperature on woody plant deacclimation kinetics.
    North M; Workmaster BA; Atucha A
    Physiol Plant; 2022 May; 174(3):e13717. PubMed ID: 35592923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring Seasonal Bud Set, Bud Burst, and Cold Hardiness in Populus.
    Johansson M; Takata N; Ibáñez C; Eriksson ME
    Methods Mol Biol; 2022; 2398():215-226. PubMed ID: 34674179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.
    Bokhorst S; Bjerke JW; Davey MP; Taulavuori K; Taulavuori E; Laine K; Callaghan TV; Phoenix GK
    Physiol Plant; 2010 Oct; 140(2):128-40. PubMed ID: 20497369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and growth of primordial shoots in Norway spruce buds before visible bud burst in relation to time and temperature in the field.
    Sutinen S; Partanen J; Viherä-Aarnio A; Häkkinen R
    Tree Physiol; 2012 Aug; 32(8):987-97. PubMed ID: 22874832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds.
    Rubio S; Noriega X; Pérez FJ
    Ann Bot; 2019 Mar; 123(4):681-689. PubMed ID: 30418484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thawing time, cooling rate and boron nutrition on freezing point of the primordial shoot in norway spruce buds.
    Räisänen M; Repo T; Lehto T
    Ann Bot; 2006 Apr; 97(4):593-9. PubMed ID: 16464880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frost hardiness of tree species is independent of phenology and macroclimatic niche.
    Hofmann M; Bruelheide H
    J Biosci; 2015 Mar; 40(1):147-57. PubMed ID: 25740149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of elevated CO(2) and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii).
    Guak S; Olsyzk DM; Fuchigami LH; Tingey DT
    Tree Physiol; 1998 Oct; 18(10):671-679. PubMed ID: 12651417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.