BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 33982652)

  • 21. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerating antibiotic discovery through artificial intelligence.
    Melo MCR; Maasch JRMA; de la Fuente-Nunez C
    Commun Biol; 2021 Sep; 4(1):1050. PubMed ID: 34504303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BRADSHAW: a system for automated molecular design.
    Green DVS; Pickett S; Luscombe C; Senger S; Marcus D; Meslamani J; Brett D; Powell A; Masson J
    J Comput Aided Mol Des; 2020 Jul; 34(7):747-765. PubMed ID: 31637565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point.
    Rodrigues T
    Org Biomol Chem; 2017 Nov; 15(44):9275-9282. PubMed ID: 29085945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Of possible cheminformatics futures.
    Oprea TI; Taboureau O; Bologa CG
    J Comput Aided Mol Des; 2012 Jan; 26(1):107-12. PubMed ID: 22207193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Next Era: Deep Learning in Pharmaceutical Research.
    Ekins S
    Pharm Res; 2016 Nov; 33(11):2594-603. PubMed ID: 27599991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial Intelligence, Machine Learning, and Deep Learning in Real-Life Drug Design Cases.
    Muller C; Rabal O; Diaz Gonzalez C
    Methods Mol Biol; 2022; 2390():383-407. PubMed ID: 34731478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Big Data and Artificial Intelligence Modeling for Drug Discovery.
    Zhu H
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():573-589. PubMed ID: 31518513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational Approaches for De Novo Drug Design: Past, Present, and Future.
    Liu X; IJzerman AP; van Westen GJP
    Methods Mol Biol; 2021; 2190():139-165. PubMed ID: 32804364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning approaches and their applications in drug discovery and design.
    Priya S; Tripathi G; Singh DB; Jain P; Kumar A
    Chem Biol Drug Des; 2022 Jul; 100(1):136-153. PubMed ID: 35426249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feature importance of machine learning prediction models shows structurally active part and important physicochemical features in drug design.
    Sasahara K; Shibata M; Sasabe H; Suzuki T; Takeuchi K; Umehara K; Kashiyama E
    Drug Metab Pharmacokinet; 2021 Aug; 39():100401. PubMed ID: 34089983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AI in drug development: a multidisciplinary perspective.
    Gallego V; Naveiro R; Roca C; Ríos Insua D; Campillo NE
    Mol Divers; 2021 Aug; 25(3):1461-1479. PubMed ID: 34251580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Scaffold Hopping via Holistic Molecular Representation.
    Grisoni F; Schneider G
    Methods Mol Biol; 2021; 2266():11-35. PubMed ID: 33759119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry.
    Kumar SA; Ananda Kumar TD; Beeraka NM; Pujar GV; Singh M; Narayana Akshatha HS; Bhagyalalitha M
    Future Med Chem; 2022 Feb; 14(4):245-270. PubMed ID: 34939433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Privileged scaffolds for library design and drug discovery.
    Welsch ME; Snyder SA; Stockwell BR
    Curr Opin Chem Biol; 2010 Jun; 14(3):347-61. PubMed ID: 20303320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
    Koromina M; Pandi MT; Patrinos GP
    OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial intelligence in drug design.
    Zhong F; Xing J; Li X; Liu X; Fu Z; Xiong Z; Lu D; Wu X; Zhao J; Tan X; Li F; Luo X; Li Z; Chen K; Zheng M; Jiang H
    Sci China Life Sci; 2018 Oct; 61(10):1191-1204. PubMed ID: 30054833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico prediction of anti-malarial hit molecules based on machine learning methods.
    Kumari M; Chandra S
    Int J Comput Biol Drug Des; 2015; 8(1):40-53. PubMed ID: 25869318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules.
    Wu CK; Zhang XC; Yang ZJ; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34427296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.