These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 33983018)

  • 21. Should Transportation Be Transitioned to Ethanol with Carbon Capture and Pipelines or Electricity? A Case Study.
    Jacobson MZ
    Environ Sci Technol; 2023 Nov; 57(44):16843-16850. PubMed ID: 37882448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated e-Methanol and Drop-in Fuels Hydrothermal Liquefaction Platform-Techno-Economic and GHG Emissions Assessment for Grid-Connected Plants under Flexible BECCU(S) Operation.
    Lozano Sanchez E; Paulsen MM; Ferrari FA; Pedersen TH
    Ind Eng Chem Res; 2024 May; 63(17):7708-7726. PubMed ID: 38706983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A techno-economic model of a solid oxide electrolysis system.
    Milobar DG; Hartvigsen JJ; Elangovan S
    Faraday Discuss; 2015; 182():329-39. PubMed ID: 26222446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Least-cost targets and avoided fossil fuel capacity in India's pursuit of renewable energy.
    Deshmukh R; Phadke A; Callaway DS
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solar-Powered Carbon Fixation for Food and Feed Production Using Microorganisms-A Comparative Techno-Economic Analysis.
    Nappa M; Lienemann M; Tossi C; Blomberg P; Jäntti J; Tittonen IJ; Penttilä M
    ACS Omega; 2020 Dec; 5(51):33242-33252. PubMed ID: 33403286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification.
    Chien F; Ngo QT; Hsu CC; Chau KY; Mohsin M
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65960-65973. PubMed ID: 34327644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Techno-Economic Assessment of Electromicrobial Production of
    Adams JD; Clark DS
    Environ Sci Technol; 2024 Apr; 58(17):7302-7313. PubMed ID: 38621294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What Future for Electrofuels in Transport? Analysis of Cost Competitiveness in Global Climate Mitigation.
    Lehtveer M; Brynolf S; Grahn M
    Environ Sci Technol; 2019 Feb; 53(3):1690-1697. PubMed ID: 30633863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO
    van der Giesen C; Meinrenken CJ; Kleijn R; Sprecher B; Lackner KS; Kramer GJ
    Environ Sci Technol; 2017 Jan; 51(2):1024-1034. PubMed ID: 27935700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emergency deployment of direct air capture as a response to the climate crisis.
    Hanna R; Abdulla A; Xu Y; Victor DG
    Nat Commun; 2021 Jan; 12(1):368. PubMed ID: 33446663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.
    Züttel A; Mauron P; Kato S; Callini E; Holzer M; Huang J
    Chimia (Aarau); 2015; 69(5):264-8. PubMed ID: 26507344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postcombustion Capture or Direct Air Capture in Decarbonizing US Natural Gas Power?
    Azarabadi H; Lackner KS
    Environ Sci Technol; 2020 Apr; 54(8):5102-5111. PubMed ID: 32212696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Achieving Decentralized, Electrified, and Decarbonized Ammonia Production.
    Fernández CA; Chapman O; Brown MA; Alvarez-Pugliese CE; Hatzell MC
    Environ Sci Technol; 2024 Apr; 58(16):6964-6977. PubMed ID: 38602491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions.
    Hittinger E; Azevedo IML
    Environ Sci Technol; 2017 Nov; 51(21):12988-12997. PubMed ID: 29016129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technical, economic and environmental analysis of solar thermochemical production of drop-in fuels.
    Moretti C; Patil V; Falter C; Geissbühler L; Patt A; Steinfeld A
    Sci Total Environ; 2023 Nov; 901():166005. PubMed ID: 37541501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of Potential and Techno-Economic Performance of Solid Sorbent Direct Air Capture with CO
    Terlouw T; Pokras D; Becattini V; Mazzotti M
    Environ Sci Technol; 2024 Jun; 58(24):10567-10581. PubMed ID: 38828994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context.
    Gallachóir BP; O'Leary F; Bazilian M; Howley M; McKeogh EJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(5):923-37. PubMed ID: 16702067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct air capture of CO
    Ozkan M
    MRS Energy Sustain; 2021; 8(2):51-56. PubMed ID: 38624600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment.
    Crawford JT; Shan CW; Budsberg E; Morgan H; Bura R; Gustafson R
    Biotechnol Biofuels; 2016; 9():141. PubMed ID: 28616077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing optimal integrated electricity supply configurations for renewable hydrogen generation in Australia.
    Ali Khan MH; Daiyan R; Han Z; Hablutzel M; Haque N; Amal R; MacGill I
    iScience; 2021 Jun; 24(6):102539. PubMed ID: 34142047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.