BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33983200)

  • 1. Island feature classification for single-wavelength airborne lidar bathymetry based on full-waveform parameters.
    Ji X; Tang Q; Xu W; Li J
    Appl Opt; 2021 Apr; 60(11):3055-3061. PubMed ID: 33983200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Depth-Adaptive Waveform Decomposition Method for Airborne LiDAR Bathymetry.
    Xing S; Wang D; Xu Q; Lin Y; Li P; Jiao L; Zhang X; Liu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Assessment of Waveform Processing for a Single-Beam Bathymetric LiDAR System (SBLS-1).
    Chen Y; Le Y; Wu L; Li S; Wang L
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a New Lightweight UAV-Borne Topo-Bathymetric LiDAR for Shallow Water Bathymetry and Object Detection.
    Wang D; Xing S; He Y; Yu J; Xu Q; Li P
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Improved Quadrilateral Fitting Algorithm for the Water Column Contribution in Airborne Bathymetric Lidar Waveforms.
    Ding K; Li Q; Zhu J; Wang C; Guan M; Chen Z; Yang C; Cui Y; Liao J
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of multichannel signal deconvolution algorithms in airborne LiDAR bathymetry based on wavelet transform.
    Song Y; Li H; Zhai G; He Y; Bian S; Zhou W
    Sci Rep; 2021 Aug; 11(1):16988. PubMed ID: 34417543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Background noise reduction for airborne bathymetric full waveforms by creating trend models using Optech CZMIL in the Yellow Sea of China.
    Zhao X; Liang G; Liang Y; Zhao J; Zhou F
    Appl Opt; 2020 Dec; 59(35):11019-11026. PubMed ID: 33361935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifeature Extraction and Seafloor Classification Combining LiDAR and MBES Data around Yuanzhi Island in the South China Sea.
    Wang M; Wu Z; Yang F; Ma Y; Wang XH; Zhao D
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrieval of Suspended Sediment Concentration from Bathymetric Bias of Airborne LiDAR.
    Zhao X; Gao J; Xia H; Zhou F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lidar full-waveform decomposition based on empirical mode decomposition and local-Levenberg-Marquard fitting.
    Qinqin W; Shengzhi Q; Yuanqing W; Shuping R
    Appl Opt; 2019 Oct; 58(29):7943-7949. PubMed ID: 31674345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method to Solve Underwater Laser Weak Waves and Superimposed Waves.
    Kang C; Lin Z; Wu S; Yang J; Zhang S; Zhang S; Li X
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Echo decomposition of full-waveform LiDAR based on a digital implicit model and a particle swarm optimization.
    Chen R; Bian H; Hou C; Fang L; Zhang O
    Appl Opt; 2020 May; 59(13):4030-4039. PubMed ID: 32400678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous wavelet transform and iterative decrement algorithm for the Lidar full-waveform echo decomposition.
    Qinqin W; Shengzhi Q; Yuanqing W
    Appl Opt; 2019 Dec; 58(34):9360-9369. PubMed ID: 31873526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Precision CO
    Ma X; Zhang H; Han G; Xu H; Shi T; Gong W; Ma Y; Li S
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners.
    Collin A; Archambault P; Long B
    PLoS One; 2011; 6(6):e21265. PubMed ID: 21701576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of coniferous forest aboveground biomass with aggregated airborne small-footprint LiDAR full-waveforms.
    Qin H; Wang C; Xi X; Tian J; Zhou G
    Opt Express; 2017 Aug; 25(16):A851-A869. PubMed ID: 29041100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions.
    Hancock S; Armston J; Hofton M; Sun X; Tang H; Duncanson LI; Kellner JR; Dubayah R
    Earth Space Sci; 2019 Feb; 6(2):294-310. PubMed ID: 31008149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved waveform reconstruction and parameter accuracy retrieval for hyperspectral lidar data.
    Ilinca J; Kaasalainen S; Malkamäki T; Hakala T
    Appl Opt; 2019 Dec; 58(35):9624-9633. PubMed ID: 31873562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise detection of water surface through the analysis of a single green waveform from bathymetry LiDAR.
    Tao B; Li J; Guo W; He Y; Li Y; Huang H; Yu J; Mao Z
    Opt Express; 2022 Oct; 30(22):40820-40841. PubMed ID: 36299009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.
    Li Z; Jupp DL; Strahler AH; Schaaf CB; Howe G; Hewawasam K; Douglas ES; Chakrabarti S; Cook TA; Paynter I; Saenz EJ; Schaefer M
    Sensors (Basel); 2016 Mar; 16(3):313. PubMed ID: 26950126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.