These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33983284)

  • 1. Electrically controlled 1  ×  2 tunable switch using a phase change material embedded silicon microring.
    Ali N; Panepucci RR; Xie Y; Dai D; Kumar R
    Appl Opt; 2021 May; 60(13):3559-3568. PubMed ID: 33983284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Ultra-Compact Optical Memristive Switches with GST as the Active Material.
    Wang N; Zhang H; Zhou L; Lu L; Chen J; Rahman BMA
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31284371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phase-change thin film-tuned photonic crystal device.
    Liu L; Mahmood R; Wei L; Hillier AC; Lu M
    Nanotechnology; 2019 Jan; 30(4):045203. PubMed ID: 30468679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermo-optic tuning of silicon nitride microring resonators with low loss non-volatile [Formula: see text] phase change material.
    Ilie ST; Faneca J; Zeimpekis I; Bucio TD; Grabska K; Hewak DW; Chong HMH; Gardes FY
    Sci Rep; 2022 Oct; 12(1):17815. PubMed ID: 36280699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental demonstration of a flexible-grid 1×2 wavelength-selective switch based on silicon microring resonators.
    Chen W; Lu H; Li S; Wang P; Dai S; Yang T; Zhang B; Yu R; Fu Q; Li J; Li Y; Dai T; Wang Y; Yang J
    Opt Lett; 2019 Jan; 44(2):403-406. PubMed ID: 30644911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of low loss 1 × 1 and 1 × 2 phase-change optical switches with different crystalline phases of Ge
    Li Y; Liu FR; Han G; Chen QY; Zhao ZP; Xie XX; Huang Y; Yuan YP
    Nanotechnology; 2020 Nov; 31(45):455206. PubMed ID: 32707570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-infrared non-volatile silicon photonic switches using nanoscale Ge
    Ali N; Kumar R
    Nanotechnology; 2020 Mar; 31(11):115207. PubMed ID: 31751966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material.
    Zhang H; Zhou L; Xu J; Lu L; Chen J; Rahman BMA
    Opt Lett; 2018 Nov; 43(22):5539-5542. PubMed ID: 30439890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable and spectrally switchable perfect absorber based on a phase-change material.
    Prakash S R; Kumar R; Mitra A
    Appl Opt; 2022 Apr; 61(10):2888-2897. PubMed ID: 35471366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-low-power nonvolatile integrated photonic switches and modulators based on nanogap-enhanced phase-change waveguides.
    Zhang J; Zheng J; Xu P; Wang Y; Majumdar A
    Opt Express; 2020 Dec; 28(25):37265-37275. PubMed ID: 33379564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material.
    Zhang H; Zhou L; Xu J; Wang N; Hu H; Lu L; Rahman BMA; Chen J
    Sci Bull (Beijing); 2019 Jun; 64(11):782-789. PubMed ID: 36659548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an electric-driven nonvolatile low-energy-consumption phase change optical switch.
    Li Y; Liu FR; Han G; Chen QY; Zhang YZ; Xie XX; Zhang LL; Lian YB
    Nanotechnology; 2021 Jul; 32(40):. PubMed ID: 34171853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully reconfigurable MEMS-based second-order coupled-resonator optical waveguide (CROW) with ultra-low tuning energy.
    Lim MG; Park YJ; Choi DJ; Kim DU; Hong MS; Her MJ; Takabayashi AY; Jeong Y; Park J; Han S; Quack N; Bae Y; Yu K; Han S
    Opt Express; 2023 Nov; 31(24):40166-40178. PubMed ID: 38041323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact nonvolatile 2×2 photonic switch based on two-mode interference.
    Song C; Gao Y; Wang G; Chen Y; Xu P; Gu C; Shi Y; Shen X
    Opt Express; 2022 Aug; 30(17):30430-30440. PubMed ID: 36242147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High thermo-optic tunability in PECVD silicon-rich amorphous silicon carbide.
    Chang LS; Pappert S; Yu PKL
    Opt Lett; 2023 Mar; 48(5):1188-1191. PubMed ID: 36857245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power-efficient polarization-insensitive tunable microring filter on a multi-layer Si
    Li X; Lu L; Chen J; Zhou L
    Opt Lett; 2023 Sep; 48(18):4861-4864. PubMed ID: 37707922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Resolved Temperature Mapping Leveraging the Strong Thermo-Optic Effect in Phase-Change Materials.
    Nobile NA; Erickson JR; Ríos C; Zhang Y; Hu J; Vitale SA; Xiong F; Youngblood N
    ACS Photonics; 2023 Oct; 10(10):3576-3585. PubMed ID: 37869555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tunable notch filter using microelectromechanical microring with gap-variable busline coupler.
    Ikeda T; Hane K
    Opt Express; 2013 Sep; 21(19):22034-42. PubMed ID: 24104095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wideband polarization-independent plasmonic switch based on GST phase-change material.
    Heidari S; Nozhat N
    Appl Opt; 2022 May; 61(14):4068-4073. PubMed ID: 36256081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength-shift-free racetrack resonator hybrided with phase change material for photonic in-memory computing.
    Zhu H; Lu Y; Cai L
    Opt Express; 2023 Jun; 31(12):18840-18850. PubMed ID: 37381314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.