These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33983331)

  • 1. Smoothing process of conformal vibration polishing for mid-spatial frequency errors: characteristics research and guiding prediction.
    Liu SW; Wang HX; Zhang QH; Hou J; Chen XH; Xu Q; Wang C
    Appl Opt; 2021 May; 60(13):3925-3935. PubMed ID: 33983331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the smoothing characteristics and shape-retaining ability of conformal vibration polishing and suppression strategy for full-spatial frequency errors of optics.
    Liu S; Wang H; Hou J; Zhang Q; Chen X; Zhong B; Zhang M
    Appl Opt; 2022 Jun; 61(17):5019-5030. PubMed ID: 36256179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces.
    He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smoothing tool design and performance during subaperture glass polishing.
    Suratwala T; Tham G; Steele R; Wong L; Menapace J; Ray N; Bauman B
    Appl Opt; 2023 Mar; 62(8):2061-2072. PubMed ID: 37133094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation-based smoothing model for optical polishing.
    Shu Y; Kim DW; Martin HM; Burge JH
    Opt Express; 2013 Nov; 21(23):28771-82. PubMed ID: 24514389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental comparisons of the smoothing effects for different multi-layer polishing tools during computer-controlled optical surfacing.
    Li X; Wei C; Zhang S; Xu W; Shao J
    Appl Opt; 2019 Jun; 58(16):4406-4413. PubMed ID: 31251250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformal smoothing of mid-spatial frequency surface error for nano-accuracy Continuous Phase Plates (CPP).
    Song C; Zhang W; Shi F; Lin Z; Nie X
    Sci Rep; 2020 Feb; 10(1):2579. PubMed ID: 32054930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on the removal characteristics of surface error with different spatial frequency based on shear thickening polishing method.
    Wang Y; Hu J; Dai Y; Hu H; Wang Y; Peng W; Du C
    Opt Express; 2024 May; 32(11):19626-19644. PubMed ID: 38859093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and analysis of the mid-spatial- frequency error characteristics and generation mechanism in sub-aperture optical polishing.
    Wan S; Wei C; Hong Z; Shao J
    Opt Express; 2020 Mar; 28(6):8959-8973. PubMed ID: 32225511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces.
    Wang B; Tie G; Shi F; Song C; Guo S
    Opt Express; 2023 Oct; 31(21):35016-35031. PubMed ID: 37859243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Approach to Decoupled Non-Resonant Polishing.
    Li Y; Zhou X; Wang G; Ma P; Wang R
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31323853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric smoothing model for visco-elastic polishing tools.
    Kim DW; Park WH; An HK; Burge JH
    Opt Express; 2010 Oct; 18(21):22515-26. PubMed ID: 20941150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Six-directional pseudorandom consecutive unicursal polishing path for suppressing mid-spatial frequency error and realizing consecutive uniform coverage.
    Zhao Q; Zhang L; Fan C
    Appl Opt; 2019 Nov; 58(31):8529-8541. PubMed ID: 31873338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse bi-step raster path for suppressing the mid-spatial-frequency error by fluid jet polishing.
    Wan K; Wan S; Jiang C; Wei C; Shao J
    Opt Express; 2022 Feb; 30(5):6603-6616. PubMed ID: 35299441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model.
    Wang T; Cheng H; Yang H; Wu W; Tam H
    Appl Opt; 2015 Jul; 54(21):6433-40. PubMed ID: 26367825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A High Efficiency and Precision Smoothing Polishing Method for NiP Coating of Metal Mirror.
    Xu C; Peng X; Liu J; Hu H; Lai T; Yang Q; Xiong Y
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional vibration actuated polishing of small surfaces by generating random-like Lissajous trajectories.
    Li Y; Zhou X; Liu Q
    Appl Opt; 2021 Feb; 60(4):851-863. PubMed ID: 33690392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and in-depth analysis of the mid-spatial-frequency error influenced by actual contact pressure distribution in sub-aperture polishing.
    Zhang L; Wan S; Li H; Guo H; Wei C; Zhang D; Shao J
    Opt Express; 2023 Apr; 31(9):14414-14431. PubMed ID: 37157306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental power spectral density analysis for mid- to high-spatial frequency surface error control.
    Hoyo JD; Choi H; Burge JH; Kim GH; Kim DW
    Appl Opt; 2017 Jun; 56(18):5258-5267. PubMed ID: 29047579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of mid-spatial frequency errors considering the pad groove feature in smoothing polishing process.
    Nie X; Li S; Hu H; Li Q
    Appl Opt; 2014 Oct; 53(28):6332-9. PubMed ID: 25322215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.