These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33983641)

  • 1. Simulating longitudinal data from marginal structural models using the additive hazard model.
    Keogh RH; Seaman SR; Gran JM; Vansteelandt S
    Biom J; 2021 Oct; 63(7):1526-1541. PubMed ID: 33983641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.
    Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S
    Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation from a known Cox MSM using standard parametric models for the g-formula.
    Young JG; Tchetgen Tchetgen EJ
    Stat Med; 2014 Mar; 33(6):1001-14. PubMed ID: 24151138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal plasmode algorithms to evaluate statistical methods in realistic scenarios: an illustration applied to occupational epidemiology.
    Souli Y; Trudel X; Diop A; Brisson C; Talbot D
    BMC Med Res Methodol; 2023 Oct; 23(1):242. PubMed ID: 37853309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Bias Analysis for a Misclassified Confounder: A Comparison Between Marginal Structural Models and Conditional Models for Point Treatments.
    Nab L; Groenwold RHH; van Smeden M; Keogh RH
    Epidemiology; 2020 Nov; 31(6):796-805. PubMed ID: 32826524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The additive hazard estimator is consistent for continuous-time marginal structural models.
    Ryalen PC; Stensrud MJ; Røysland K
    Lifetime Data Anal; 2019 Oct; 25(4):611-638. PubMed ID: 30798386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of conventional and marginal structural Cox model estimators: a simulation study.
    Xiao Y; Abrahamowicz M; Moodie EE
    Int J Biostat; 2010; 6(2):Article 13. PubMed ID: 21969997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function.
    Zheng W; Petersen M; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):233-52. PubMed ID: 27227723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination.
    Lusivika-Nzinga C; Selinger-Leneman H; Grabar S; Costagliola D; Carrat F
    BMC Med Res Methodol; 2017 Dec; 17(1):160. PubMed ID: 29202691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the causal effects of time-varying treatments in nested case-control studies using marginal structural Cox models.
    Takeuchi Y; Hagiwawa Y; Komukai S; Matsuyama Y
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38465985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A test for the correct specification of marginal structural models.
    Sall A; Aubé K; Trudel X; Brisson C; Talbot D
    Stat Med; 2019 Jul; 38(17):3168-3183. PubMed ID: 30856294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitting marginal structural models: estimating covariate-treatment associations in the reweighted data set can guide model fitting.
    Pullenayegum EM; Lam C; Manlhiot C; Feldman BM
    J Clin Epidemiol; 2008 Sep; 61(9):875-81. PubMed ID: 18486447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrumental variable estimation of the causal hazard ratio.
    Wang L; Tchetgen Tchetgen E; Martinussen T; Vansteelandt S
    Biometrics; 2023 Jun; 79(2):539-550. PubMed ID: 36377509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity analysis for unmeasured confounding in a marginal structural Cox proportional hazards model.
    Klungsøyr O; Sexton J; Sandanger I; Nygård JF
    Lifetime Data Anal; 2009 Jun; 15(2):278-94. PubMed ID: 19109770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating long-term treatment effects in observational data: A comparison of the performance of different methods under real-world uncertainty.
    Newsome SJ; Keogh RH; Daniel RM
    Stat Med; 2018 Jul; 37(15):2367-2390. PubMed ID: 29671915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrumental variable estimation of the marginal structural Cox model for time-varying treatments.
    Cui Y; Michael H; Tanser F; Tchetgen Tchetgen E
    Biometrika; 2023 Mar; 110(1):101-118. PubMed ID: 36798841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies.
    Karim ME; Petkau J; Gustafson P; Platt RW; Tremlett H;
    Stat Methods Med Res; 2018 Jun; 27(6):1709-1722. PubMed ID: 27659168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models.
    Yiu S; Su L
    Biometrics; 2022 Mar; 78(1):115-127. PubMed ID: 33247594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjusting for time-varying confounders in survival analysis using structural nested cumulative survival time models.
    Seaman S; Dukes O; Keogh R; Vansteelandt S
    Biometrics; 2020 Jun; 76(2):472-483. PubMed ID: 31562652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.