These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33983752)

  • 1.
    Uhlig MR; Garcia R
    Nano Lett; 2021 Jul; 21(13):5593-5598. PubMed ID: 33983752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces.
    Uhlig MR; Benaglia S; Thakkar R; Comer J; Garcia R
    Nanoscale; 2021 Mar; 13(10):5275-5283. PubMed ID: 33624666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Liquid Water on Graphite, Graphene, and 2D Materials.
    Garcia R
    ACS Nano; 2023 Jan; 17(1):51-69. PubMed ID: 36507725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial layering of hydrocarbons on pristine graphite surfaces immersed in water.
    Arvelo DM; Uhlig MR; Comer J; García R
    Nanoscale; 2022 Oct; 14(38):14178-14184. PubMed ID: 36124993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary condensation under atomic-scale confinement.
    Yang Q; Sun PZ; Fumagalli L; Stebunov YV; Haigh SJ; Zhou ZW; Grigorieva IV; Wang FC; Geim AK
    Nature; 2020 Dec; 588(7837):250-253. PubMed ID: 33299189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy.
    Fukuma T
    Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Water Is Separated from a Hydrophobic Silica Surface by a Gap of 1.2 nm.
    Arvelo DM; Comer J; Schmit J; Garcia R
    ACS Nano; 2024 Jul; 18(28):18683-18692. PubMed ID: 38973716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary Condensation of Water in Graphene Nanocapillaries.
    Faraji F; Neyts EC; Milošević MV; Peeters FM
    Nano Lett; 2024 May; 24(18):5625-5630. PubMed ID: 38662431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Universal Solidification in the Elongated Water Nanomeniscus.
    Kim J; Won D; Sung B; Jhe W
    J Phys Chem Lett; 2014 Feb; 5(4):737-42. PubMed ID: 26270845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.
    Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T
    Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Atomic Force Microscopy: Imaging of Two- and Three-Dimensional Interfacial Water.
    Cao D; Song Y; Tang B; Xu L
    Front Chem; 2021; 9():745446. PubMed ID: 34631666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on the behavior of water droplet confined between an atomic force microscope tip and rough surfaces.
    Ko JA; Choi HJ; Ha MY; Hong SD; Yoon HS
    Langmuir; 2010 Jun; 26(12):9728-35. PubMed ID: 20462264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.
    Nowak D; Christenson HK
    Langmuir; 2009 Sep; 25(17):9908-12. PubMed ID: 19705887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li⁺ and Cs⁺ electrolyte solutions.
    Baimpos T; Shrestha BR; Raman S; Valtiner M
    Langmuir; 2014 Apr; 30(15):4322-32. PubMed ID: 24655312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions.
    Herruzo ET; Asakawa H; Fukuma T; Garcia R
    Nanoscale; 2013 Apr; 5(7):2678-85. PubMed ID: 23235926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invariance of the solid-liquid interfacial energy in electrowetting probed via capillary condensation.
    Gupta R; Olivier GK; Frechette J
    Langmuir; 2010 Jul; 26(14):11946-50. PubMed ID: 20552998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces.
    Miyazawa K; Watkins M; Shluger AL; Fukuma T
    Nanotechnology; 2017 Jun; 28(24):245701. PubMed ID: 28481216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.