These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33983752)

  • 61. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy.
    Söngen H; Reischl B; Miyata K; Bechstein R; Raiteri P; Rohl AL; Gale JD; Fukuma T; Kühnle A
    Phys Rev Lett; 2018 Mar; 120(11):116101. PubMed ID: 29601750
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Atom-resolved analysis of an ionic KBr(001) crystal surface covered with a thin water layer by frequency modulation atomic force microscopy.
    Arai T; Koshioka M; Abe K; Tomitori M; Kokawa R; Ohta M; Yamada H; Kobayashi K; Oyabu N
    Langmuir; 2015 Apr; 31(13):3876-83. PubMed ID: 25790119
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anharmonicity, solvation forces, and resolution in atomic force microscopy at the solid-liquid interface.
    Voïtchovsky K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022407. PubMed ID: 24032849
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nanoscale insight into the relation between pressure solution of calcite and interfacial friction.
    Fu B; Diao Y; Espinosa-Marzal RM
    J Colloid Interface Sci; 2021 Nov; 601():254-264. PubMed ID: 34082230
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanostructure of a deep eutectic solvent at solid interfaces.
    Elbourne A; Meftahi N; Greaves TL; McConville CF; Bryant G; Bryant SJ; Christofferson AJ
    J Colloid Interface Sci; 2021 Jun; 591():38-51. PubMed ID: 33592524
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Direct mapping of the solid-liquid adhesion energy with subnanometre resolution.
    Voïtchovsky K; Kuna JJ; Contera SA; Tosatti E; Stellacci F
    Nat Nanotechnol; 2010 Jun; 5(6):401-5. PubMed ID: 20418866
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Shape and Effective Spring Constant of Liquid Interfaces Probed at the Nanometer Scale: Finite Size Effects.
    Dupré de Baubigny J; Benzaquen M; Fabié L; Delmas M; Aimé JP; Legros M; Ondarçuhu T
    Langmuir; 2015 Sep; 31(36):9790-8. PubMed ID: 26295187
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nano-atomic scale hydrophobic/philic confinement of peptides on mineral surfaces by cross-correlated SPM and quantum mechanical DFT analysis.
    Moro D; Ulian G; ValdrÈ G
    J Microsc; 2020 Dec; 280(3):204-221. PubMed ID: 32458447
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy.
    Miyazawa K; Kobayashi N; Watkins M; Shluger AL; Amano K; Fukuma T
    Nanoscale; 2016 Apr; 8(13):7334-42. PubMed ID: 26980273
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanoscale repulsive forces between mica and silica surfaces in aqueous solutions.
    Acuña SM; Toledo PG
    J Colloid Interface Sci; 2011 Sep; 361(1):397-9. PubMed ID: 21684550
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Grand canonical Monte Carlo simulation study of capillary condensation between nanoparticles.
    Kim S; Ehrman SH
    J Chem Phys; 2007 Oct; 127(13):134702. PubMed ID: 17919038
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Directly probing the effects of ions on hydration forces at interfaces.
    Kilpatrick JI; Loh SH; Jarvis SP
    J Am Chem Soc; 2013 Feb; 135(7):2628-34. PubMed ID: 23398487
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transport mechanisms in capillary condensation of water at a single-asperity nanoscopic contact.
    Sirghi L
    Langmuir; 2012 Feb; 28(5):2558-66. PubMed ID: 22229845
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions.
    Biswas R; Bagchi B
    J Phys Condens Matter; 2018 Jan; 30(1):013001. PubMed ID: 29205175
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy.
    Guo J; Jiang Y
    Acc Chem Res; 2022 Jun; 55(12):1680-1692. PubMed ID: 35678704
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chemical Identification at the Solid-Liquid Interface.
    Söngen H; Marutschke C; Spijker P; Holmgren E; Hermes I; Bechstein R; Klassen S; Tracey J; Foster AS; Kühnle A
    Langmuir; 2017 Jan; 33(1):125-129. PubMed ID: 27960056
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A partial equilibrium theory for liquids bonded to immobile solids.
    Searcy AW; Beruto DT; Barberis F
    J Chem Phys; 2009 May; 130(18):184713. PubMed ID: 19449949
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prediction of Nanoscale Water Meniscus Shape between Deliquescent KDP Crystal Optics and AFM Probe for Water-Dissolution Repairing.
    Chen G; Zhao L; Cheng J; Chen M; Wang J; Ding W; Lei H
    Langmuir; 2023 Dec; 39(50):18548-18557. PubMed ID: 38054931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.