These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33983752)

  • 81. The interface ionic liquid(s)/electrode(s): in situ STM and AFM measurements.
    Endres F; Borisenko N; El Abedin SZ; Hayes R; Atkin R
    Faraday Discuss; 2012; 154():221-33; discussion 313-33, 465-71. PubMed ID: 22455022
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Unveiling Nanoscale Heterogeneities at the Bias-Dependent Gold-Electrolyte Interface.
    Antony LSD; Monin L; Aarts M; Alarcon-Llado E
    J Am Chem Soc; 2024 May; 146(19):12933-12940. PubMed ID: 38591960
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effect of the environmental humidity on the bulk, interfacial and nanoconfined properties of an ionic liquid.
    Jurado LA; Kim H; Rossi A; Arcifa A; Schuh JK; Spencer ND; Leal C; Ewoldt RH; Espinosa-Marzal RM
    Phys Chem Chem Phys; 2016 Aug; 18(32):22719-30. PubMed ID: 27430333
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Two-dimensional material confined water.
    Li Q; Song J; Besenbacher F; Dong M
    Acc Chem Res; 2015 Jan; 48(1):119-27. PubMed ID: 25539031
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Advances in Atomic Force Microscopy: Weakly Perturbative Imaging of the Interfacial Water.
    Cao D; Song Y; Peng J; Ma R; Guo J; Chen J; Li X; Jiang Y; Wang E; Xu L
    Front Chem; 2019; 7():626. PubMed ID: 31572715
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy.
    Teschke O; Ceotto G; de Souza EF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011605. PubMed ID: 11461268
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Direct comparison between subnanometer hydration structures on hydrophilic and hydrophobic surfaces via three-dimensional scanning force microscopy.
    Yang CW; Miyazawa K; Fukuma T; Miyata K; Hwang IS
    Phys Chem Chem Phys; 2018 Sep; 20(36):23522-23527. PubMed ID: 30183018
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Influence of Water on Structure, Dynamics, and Electrostatics of Hydrophilic and Hydrophobic Ionic Liquids in Charged and Hydrophilic Confinement between Mica Surfaces.
    Han M; Espinosa-Marzal RM
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33465-33477. PubMed ID: 31408307
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.
    Black JM; Zhu M; Zhang P; Unocic RR; Guo D; Okatan MB; Dai S; Cummings PT; Kalinin SV; Feng G; Balke N
    Sci Rep; 2016 Sep; 6():32389. PubMed ID: 27587276
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Water confined in nanotubes and between graphene sheets: a first principle study.
    Cicero G; Grossman JC; Schwegler E; Gygi F; Galli G
    J Am Chem Soc; 2008 Feb; 130(6):1871-8. PubMed ID: 18211065
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Application of atomic force microscopy to the study of natural and model soil particles.
    Cheng S; Bryant R; Doerr SH; Rhodri Williams P; Wright CJ
    J Microsc; 2008 Sep; 231(3):384-94. PubMed ID: 18754993
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Dynamic and static measurement of interfacial capillary forces by a hybrid nanomechanical system.
    Kwon S; Stambaugh C; Kim B; An S; Jhe W
    Nanoscale; 2014 May; 6(10):5474-8. PubMed ID: 24727797
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Molecular features of hydration layers probed by atomic force microscopy.
    Zhang Z; Ryu S; Ahn Y; Jang J
    Phys Chem Chem Phys; 2018 Dec; 20(48):30492-30501. PubMed ID: 30511076
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Confined methane-water interfacial layers and thickness measurements using in situ Raman spectroscopy.
    Pinho B; Liu Y; Rizkin B; Hartman RL
    Lab Chip; 2017 Nov; 17(22):3883-3890. PubMed ID: 29051944
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Air/Water Interface Rheology Probed by Thermal Capillary Waves.
    Zhang H; Zhang Z; Grauby-Heywang C; Kellay H; Maali A
    Langmuir; 2023 Mar; 39(9):3332-3340. PubMed ID: 36802344
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The nucleation, growth, and adhesion of water bridges in sliding nano-contacts.
    Cassin F; Hahury R; Lançon T; Franklin S; Weber B
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37306954
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Hydration Friction in Nanoconfinement: From Bulk via Interfacial to Dry Friction.
    Schlaich A; Kappler J; Netz RR
    Nano Lett; 2017 Oct; 17(10):5969-5976. PubMed ID: 28910108
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography.
    Shahraeeni E; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016317. PubMed ID: 22400668
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Non-monotonous Wetting of Graphene-Mica and MoS
    Rauf A; Schilo A; Severin N; Sokolov IM; Rabe JP
    Langmuir; 2018 Dec; 34(50):15228-15237. PubMed ID: 30449108
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effect of surface roughness and softness on water capillary adhesion in apolar media.
    Banerjee S; Mulder P; Kleijn JM; Cohen Stuart MA
    J Phys Chem A; 2012 Jun; 116(25):6481-8. PubMed ID: 22519933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.