These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33983921)

  • 1. Global importance analysis: An interpretability method to quantify importance of genomic features in deep neural networks.
    Koo PK; Majdandzic A; Ploenzke M; Anand P; Paul SB
    PLoS Comput Biol; 2021 May; 17(5):e1008925. PubMed ID: 33983921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ResidualBind: Uncovering Sequence-Structure Preferences of RNA-Binding Proteins with Deep Neural Networks.
    Koo PK; Ploenzke M; Anand P; Paul S; Majdandzic A
    Methods Mol Biol; 2023; 2586():197-215. PubMed ID: 36705906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEEP MOTIF DASHBOARD: VISUALIZING AND UNDERSTANDING GENOMIC SEQUENCES USING DEEP NEURAL NETWORKS.
    Lanchantin J; Singh R; Wang B; Qi Y
    Pac Symp Biocomput; 2017; 22():254-265. PubMed ID: 27896980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Representation learning of genomic sequence motifs with convolutional neural networks.
    Koo PK; Eddy SR
    PLoS Comput Biol; 2019 Dec; 15(12):e1007560. PubMed ID: 31856220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ExplaiNN: interpretable and transparent neural networks for genomics.
    Novakovsky G; Fornes O; Saraswat M; Mostafavi S; Wasserman WW
    Genome Biol; 2023 Jun; 24(1):154. PubMed ID: 37370113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of deep learning in genomics and epigenomics.
    Talukder A; Barham C; Li X; Hu H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mRNA-CLA: An interpretable deep learning approach for predicting mRNA subcellular localization.
    Chen Y; Du Z; Ren X; Pan C; Zhu Y; Li Z; Meng T; Yao X
    Methods; 2024 Jul; 227():17-26. PubMed ID: 38705502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting deep neural networks that yield consistent attribution-based interpretations for genomics.
    Majdandzic A; Rajesh C; Tang A; Toneyan S; Labelson E; Tripathy R; Koo PK
    Proc Mach Learn Res; 2022 Nov; 200():131-149. PubMed ID: 37205975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDeepSSP: Explainable deep neural networks for exact splice sites prediction.
    Amilpur S; Bhukya R
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050024. PubMed ID: 32696716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying complex motifs in massive omics data with a variable-convolutional layer in deep neural network.
    Li JY; Jin S; Tu XM; Ding Y; Gao G
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34219140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting RNA sequence-structure likelihood via structure-aware deep learning.
    Zhou Y; Pedrielli G; Zhang F; Wu T
    BMC Bioinformatics; 2024 Sep; 25(1):316. PubMed ID: 39350066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correcting gradient-based interpretations of deep neural networks for genomics.
    Majdandzic A; Rajesh C; Koo PK
    Genome Biol; 2023 May; 24(1):109. PubMed ID: 37161475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Order Convolutional Neural Network Architecture for Predicting DNA-Protein Binding Sites.
    Zhang Q; Zhu L; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1184-1192. PubMed ID: 29993783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities.
    Trabelsi A; Chaabane M; Ben-Hur A
    Bioinformatics; 2019 Jul; 35(14):i269-i277. PubMed ID: 31510640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences.
    Greenside P; Shimko T; Fordyce P; Kundaje A
    Bioinformatics; 2018 Sep; 34(17):i629-i637. PubMed ID: 30423062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.
    Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J
    Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing interpretable deep learning applications for functional genomics: a quantitative analysis.
    van Hilten A; Katz S; Saccenti E; Niessen WJ; Roshchupkin GV
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39293804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.