These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33984172)

  • 21. Facile Fabrication of Multifunctional Hybrid Silk Fabrics with Controllable Surface Wettability and Laundering Durability.
    Chen F; Yang H; Liu X; Chen D; Xiao X; Liu K; Li J; Cheng F; Dong B; Zhou Y; Guo Z; Qin Y; Wang S; Xu W
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5653-60. PubMed ID: 26835541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving biocompatibility by surface modification techniques on implantable bioelectronics.
    Lin P; Lin CW; Mansour R; Gu F
    Biosens Bioelectron; 2013 Sep; 47():451-60. PubMed ID: 23624013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance.
    Huang CJ; Chu SH; Wang LC; Li CH; Lee TR
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23776-86. PubMed ID: 26452141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a Facile Antifouling Sensor Based on the Synergy between an Antibody and Phase-Transited BSA.
    Wang S; Dong X; Li J; Liu J; Ruan Y; Xia Y
    Biosensors (Basel); 2023 Nov; 13(12):. PubMed ID: 38131764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of trapped air and lubricant in the interactions between fouling and SiO
    He X; Tian F; Bai X; Yuan C
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110502. PubMed ID: 31542644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nanomolecular approach to decrease adhesion of biofouling-producing bacteria to graphene-coated material.
    Parra C; Dorta F; Jimenez E; Henríquez R; Ramírez C; Rojas R; Villalobos P
    J Nanobiotechnology; 2015 Nov; 13():82. PubMed ID: 26573588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Streptavidin-coated TiO2 surfaces are biologically inert: protein adsorption and osteoblast adhesion studies.
    Lehnert M; Gorbahn M; Klein M; Al-Nawas B; Köper I; Knoll W; Veith M
    J Biomed Mater Res A; 2012 Feb; 100(2):388-95. PubMed ID: 22083833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials?
    Spriano S; Sarath Chandra V; Cochis A; Uberti F; Rimondini L; Bertone E; Vitale A; Scolaro C; Ferrari M; Cirisano F; Gautier di Confiengo G; Ferraris S
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():542-555. PubMed ID: 28254329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Super-spreading on superamphiphilic micro-organized nanochannel anodic aluminum oxide surfaces for heat dissipation.
    Zhu Z; Chen Y; Xu Z; Yu Z; Luo X; Zhou J; Tian Y; Jiang L
    iScience; 2021 Apr; 24(4):102334. PubMed ID: 33855283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Precisely Engineered Photoreactive Titanium Nanoarray Coating to Mitigate Biofouling in Ultrafiltration.
    Zhang L; Shi X; Sun M; Porter CJ; Zhou X; Elimelech M
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9975-9984. PubMed ID: 33617214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein, Bacteria, and Fungal Spore Adhesion.
    Knowles BR; Yang D; Wagner P; Maclaughlin S; Higgins MJ; Molino PJ
    Langmuir; 2019 Feb; 35(5):1335-1345. PubMed ID: 30086644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface properties of nanocrystalline TiO2 coatings in relation to the in vitro plasma protein adsorption.
    Lorenzetti M; Bernardini G; Luxbacher T; Santucci A; Kobe S; Novak S
    Biomed Mater; 2015 Jul; 10(4):045012. PubMed ID: 26225819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antifouling properties of layer by layer DNA coatings.
    Subbiahdoss G; Zeng G; Aslan H; Ege Friis J; Iruthayaraj J; Zelikin AN; Meyer RL
    Biofouling; 2019 Jan; 35(1):75-88. PubMed ID: 30821496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functionalization of Polydopamine via the Aza-Michael Reaction for Antimicrobial Interfaces.
    Liu CY; Huang CJ
    Langmuir; 2016 May; 32(19):5019-28. PubMed ID: 27118187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.
    Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG
    J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomimetic anchors applied to the host-guest antifouling functionalization of titanium substrates.
    Cai XY; Li NN; Chen JC; Kang ET; Xu LQ
    J Colloid Interface Sci; 2016 Aug; 475():8-16. PubMed ID: 27135943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine Learning-Enabled Design and Prediction of Protein Resistance on Self-Assembled Monolayers and Beyond.
    Liu Y; Zhang D; Tang Y; Zhang Y; Chang Y; Zheng J
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11306-11319. PubMed ID: 33635641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of antifouling layers in fabricating bioactive surfaces.
    Chen Q; Zhang D; Gu J; Zhang H; Wu X; Cao C; Zhang X; Liu R
    Acta Biomater; 2021 May; 126():45-62. PubMed ID: 33727195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mussel-inspired modification of dextran for protein-resistant coatings of titanium oxide.
    Park JY; Kim JS; Nam YS
    Carbohydr Polym; 2013 Sep; 97(2):753-7. PubMed ID: 23911511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact angle hysteresis, adhesion, and marine biofouling.
    Schmidt DL; Brady RF; Lam K; Schmidt DC; Chaudhury MK
    Langmuir; 2004 Mar; 20(7):2830-6. PubMed ID: 15835160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.