These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 339842)

  • 1. The synthesis of yeast matrix mitochondrial enzymes is regulated by different levels of mitochondrial function.
    Satrustegui J; Machado A
    Arch Biochem Biophys; 1977 Dec; 184(2):355-63. PubMed ID: 339842
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitochondriogenesis analyzed by blocks on mitochondrial translation and transcription.
    Mahler HR; Perlman PS
    Biochemistry; 1971 Aug; 10(16):2979-90. PubMed ID: 4331328
    [No Abstract]   [Full Text] [Related]  

  • 3. Mitochondrial enzymatic alterations produced in the myocardium by anoxic cardiac arrest.
    Gomes OM; Pedroso FI; Pereira SN; Ayoub AH; Kwang WT; Bittencourt D; Zerbini EJ
    J Thorac Cardiovasc Surg; 1974 Apr; 67(4):649-58. PubMed ID: 4818539
    [No Abstract]   [Full Text] [Related]  

  • 4. Derepression of mitochondria and their enzymes in yeast: regulatory aspects.
    Perlman PS; Mahler HR
    Arch Biochem Biophys; 1974 May; 162(1):248-71. PubMed ID: 4151576
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli.
    Gray CT; Wimpenny JW; Mossman MR
    Biochim Biophys Acta; 1966 Mar; 117(1):33-41. PubMed ID: 5330664
    [No Abstract]   [Full Text] [Related]  

  • 6. Isolation of mutants of Bacillus stearothermophilus blocked in catabolic function.
    Rowe JJ; Goldberg ID; Amelunxen RE
    Can J Microbiol; 1973 Dec; 19(12):1521-3. PubMed ID: 4149949
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation and characterization of carbon catabolite repression mutants in Saccharomyces cerevisiae.
    Donnini C; Goffrini P; Rossi C; Ferrero I
    Microbiologica; 1990 Oct; 13(4):283-95. PubMed ID: 2087199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental block in citric acid cycle mutants of Bacillus subtilis.
    Freese EB; Marks CL
    J Bacteriol; 1973 Dec; 116(3):1466-8. PubMed ID: 4201776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carcinogens 3,4-benzpyrene and 3-methylcholanthrene: induction of mitochondrial oxidative enzymes.
    Zenker N; Hanker JS; Morizono Y; Deb C; Seligman AM
    Science; 1968 Mar; 159(3819):1102-3. PubMed ID: 4295147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biogenesis of mitochondria. IX. Formation of the soluble mitochondrial enzymes malate dehydrogenase and fumarase in Saccharomyces cerevisiae.
    Vary MJ; Edwards CL; Stewart PR
    Arch Biochem Biophys; 1969 Mar; 130(1):235-43. PubMed ID: 4305159
    [No Abstract]   [Full Text] [Related]  

  • 11. Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker's yeast grown in a variety of hypoxic conditions.
    Machado A; Nuñez de Castro I; Mayor F
    Mol Cell Biochem; 1975 Feb; 6(2):93-100. PubMed ID: 1091851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenesis of mitochondria. XVII. The role of mitochondrial and cytoplasmic ribosomal protein synthesis in the oxygen-induced formation of yeast mitochondrial enzymes.
    Vary MJ; Stewart PR; Linnane AW
    Arch Biochem Biophys; 1970 Dec; 141(2):430-9. PubMed ID: 4322285
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of the synthesis of mitochondrial enzymes and cytochromes. Distinction between catabolite repression and anaerobiosis in Saccharomyces cerevisiae.
    Lowdon MJ; Gordon PA; Stewart PR
    Arch Mikrobiol; 1972; 85(4):355-61. PubMed ID: 4347454
    [No Abstract]   [Full Text] [Related]  

  • 14. Sequential increase in activity of mitochondrial enzymes during respiratory adaptation of anaerobically-grown synchronous yeast.
    Nejedlý K; Greksák M
    FEBS Lett; 1977 May; 77(1):33-6. PubMed ID: 192598
    [No Abstract]   [Full Text] [Related]  

  • 15. Aerobic adaptation in yeast. II. Changes in enzyme profiles during a step-down anaerobic-aerobic transfer.
    Ball AJ; Bruver RM; Tustanoff ER
    Can J Microbiol; 1975 Jun; 21(6):855-61. PubMed ID: 167928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of unsaturated fatty acids on the development of respiration and on protein synthesis in an unsaturated fatty acid mutant of Saccharomyces cerevisiae.
    Gordon PA; Lowdon MJ; Stewart PR
    J Bacteriol; 1972 May; 110(2):511-5. PubMed ID: 4336688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential sensitivities to glucose and galactose repression of gluconeogenic and respiratory enzymes from Saccharomyces cerevisiae.
    Herrero P; Fernández R; Moreno F
    Arch Microbiol; 1985 Dec; 143(3):216-9. PubMed ID: 3006623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of streptomycin on some enzyme systems of Bacillus subtilis.
    Mandal A; Majumdar SK
    Appl Microbiol; 1968 Nov; 16(11):1786-9. PubMed ID: 4973069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activities of mitochondrial enzymes during aerobic synchronous growth of aerobically and anaerobically grown Saccharomyces cerevisiae.
    Nejedlý K; Greksák M
    Folia Microbiol (Praha); 1977; 22(1):19-29. PubMed ID: 190089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of antibiotics on adaptive formation of mitochondria in yeast.
    Asano K
    J Biochem; 1972 Sep; 72(3):737-47. PubMed ID: 4344033
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.