BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33984474)

  • 1. Membrane anchoring of a curvature-inducing peptide, EpN18, promotes membrane translocation of octaarginine.
    Kuroki K; Sakai T; Masuda T; Kawano K; Futaki S
    Bioorg Med Chem Lett; 2021 Jul; 43():128103. PubMed ID: 33984474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the activity of membrane remodeling epsin-peptide by trimerization.
    Hsu WY; Masuda T; Afonin S; Sakai T; Arafiles JVV; Kawano K; Hirose H; Imanishi M; Ulrich AS; Futaki S
    Bioorg Med Chem Lett; 2020 Jun; 30(12):127190. PubMed ID: 32317210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curvature engineering: positive membrane curvature induced by epsin N-terminal peptide boosts internalization of octaarginine.
    Pujals S; Miyamae H; Afonin S; Murayama T; Hirose H; Nakase I; Taniuchi K; Umeda M; Sakamoto K; Ulrich AS; Futaki S
    ACS Chem Biol; 2013 Sep; 8(9):1894-9. PubMed ID: 23834464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells.
    Murayama T; Masuda T; Afonin S; Kawano K; Takatani-Nakase T; Ida H; Takahashi Y; Fukuma T; Ulrich AS; Futaki S
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7644-7647. PubMed ID: 28597524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Dissection of Epsin-1 N-Terminal Helical Peptide: The Role of Hydrophobic Residues in Modulating Membrane Curvature.
    Nishimura M; Kawaguchi Y; Kuroki K; Nakagawa Y; Masuda T; Sakai T; Kawano K; Hirose H; Imanishi M; Takatani-Nakase T; Afonin S; Ulrich AS; Futaki S
    Chemistry; 2023 May; 29(29):e202300129. PubMed ID: 36878866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature.
    Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S
    Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loosening of Lipid Packing by Cell-Surface Recruitment of Amphiphilic Peptides by Coiled-Coil Tethering.
    Sakai T; Kawano K; Iino M; Takeuchi T; Imanishi M; Futaki S
    Chembiochem; 2019 Aug; 20(16):2151-2159. PubMed ID: 31225928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiating the Membrane Interaction of an Attenuated Cationic Amphiphilic Lytic Peptide for Intracellular Protein Delivery by Anchoring with Pyrene Moiety.
    Sakamoto K; Michibata J; Hirai Y; Ide A; Ikitoh A; Takatani-Nakase T; Futaki S
    Bioconjug Chem; 2021 May; 32(5):950-957. PubMed ID: 33861579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical mechanism for the enhanced ability of lipid membrane penetration of polyarginine.
    Takechi Y; Yoshii H; Tanaka M; Kawakami T; Aimoto S; Saito H
    Langmuir; 2011 Jun; 27(11):7099-107. PubMed ID: 21526829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipicolylamine/Metal Complexes that Promote Direct Cell-Membrane Penetration of Octaarginine.
    Kawaguchi Y; Ise S; Azuma Y; Takeuchi T; Kawano K; Le TK; Ohkanda J; Futaki S
    Bioconjug Chem; 2019 Feb; 30(2):454-460. PubMed ID: 30428256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol re-organisation and lipid de-packing by arginine-rich cell penetrating peptides: Role in membrane translocation.
    Almeida C; Maniti O; Di Pisa M; Swiecicki JM; Ayala-Sanmartin J
    PLoS One; 2019; 14(1):e0210985. PubMed ID: 30673771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-operative membrane disruption between cell-penetrating peptide and cargo: implications for the therapeutic use of the Bcl-2 converter peptide D-NuBCP-9-r8.
    Watkins CL; Sayers EJ; Allender C; Barrow D; Fegan C; Brennan P; Jones AT
    Mol Ther; 2011 Dec; 19(12):2124-32. PubMed ID: 21934653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronic acid controls the uptake pathway and intracellular trafficking of an octaarginine-modified gene vector in CD44 positive- and CD44 negative-cells.
    Yamada Y; Hashida M; Harashima H
    Biomaterials; 2015 Jun; 52():189-98. PubMed ID: 25818425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acylation of octaarginine: Implication to the use of intracellular delivery vectors.
    Katayama S; Hirose H; Takayama K; Nakase I; Futaki S
    J Control Release; 2011 Jan; 149(1):29-35. PubMed ID: 20144669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis.
    Nakase I; Tadokoro A; Kawabata N; Takeuchi T; Katoh H; Hiramoto K; Negishi M; Nomizu M; Sugiura Y; Futaki S
    Biochemistry; 2007 Jan; 46(2):492-501. PubMed ID: 17209559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular interplays involved in the cellular uptake of octaarginine on cell surfaces and the importance of syndecan-4 cytoplasmic V domain for the activation of protein kinase Cα.
    Nakase I; Osaki K; Tanaka G; Utani A; Futaki S
    Biochem Biophys Res Commun; 2014 Apr; 446(4):857-62. PubMed ID: 24632200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy.
    Takechi-Haraya Y; Aki K; Tohyama Y; Harano Y; Kawakami T; Saito H; Okamura E
    Pharmaceuticals (Basel); 2017 Apr; 10(2):. PubMed ID: 28420127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.
    Herce HD; Garcia AE; Litt J; Kane RS; Martin P; Enrique N; Rebolledo A; Milesi V
    Biophys J; 2009 Oct; 97(7):1917-25. PubMed ID: 19804722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans.
    Kosuge M; Takeuchi T; Nakase I; Jones AT; Futaki S
    Bioconjug Chem; 2008 Mar; 19(3):656-64. PubMed ID: 18269225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.