These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 33984633)

  • 41. Laminin alpha 4 promotes bone regeneration by facilitating cell adhesion and vascularization.
    Tang Y; Luo K; Tan J; Zhou R; Chen Y; Chen C; Rong Z; Deng M; Yu X; Zhang C; Dai Q; Wu W; Xu J; Dong S; Luo F
    Acta Biomater; 2021 May; 126():183-198. PubMed ID: 33711525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cells-Micropatterning Biomaterials for Immune Activation and Bone Regeneration.
    Zhang B; Han F; Wang Y; Sun Y; Zhang M; Yu X; Qin C; Zhang H; Wu C
    Adv Sci (Weinh); 2022 Jun; 9(18):e2200670. PubMed ID: 35478383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DAR 16-II Primes Endothelial Cells for Angiogenesis Improving Bone Ingrowth in 3D-Printed BCP Scaffolds and Regeneration of Critically Sized Bone Defects.
    Alfayez E; Veschini L; Dettin M; Zamuner A; Gaetani M; Carreca AP; Najman S; Ghanaati S; Coward T; Di Silvio L
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36358970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects.
    Eichholz KF; Freeman FE; Pitacco P; Nulty J; Ahern D; Burdis R; Browe DC; Garcia O; Hoey DA; Kelly DJ
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35947963
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Agent-based modeling of osteogenic differentiation of mesenchymal stem cells in porous biomaterials.
    Bayrak ES; Mehdizadeh H; Akar B; Somo SI; Brey EM; Cinar A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2924-7. PubMed ID: 25570603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual 3D printing for vascularized bone tissue regeneration.
    Hann SY; Cui H; Esworthy T; Zhou X; Lee SJ; Plesniak MW; Zhang LG
    Acta Biomater; 2021 Mar; 123():263-274. PubMed ID: 33454383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering.
    Gandhimathi C; Quek YJ; Ezhilarasu H; Ramakrishna S; Bay BH; Srinivasan DK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31623264
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration.
    Zhang M; Lin R; Wang X; Xue J; Deng C; Feng C; Zhuang H; Ma J; Qin C; Wan L; Chang J; Wu C
    Sci Adv; 2020 Mar; 6(12):eaaz6725. PubMed ID: 32219170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.
    Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D-printed Sr
    Pan H; Deng L; Huang L; Zhang Q; Yu J; Huang Y; Chen L; Chang J
    Front Bioeng Biotechnol; 2022; 10():1007535. PubMed ID: 36185424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combination of polyetherketoneketone scaffold and human mesenchymal stem cells from temporomandibular joint synovial fluid enhances bone regeneration.
    Lin Y; Umebayashi M; Abdallah MN; Dong G; Roskies MG; Zhao YF; Murshed M; Zhang Z; Tran SD
    Sci Rep; 2019 Jan; 9(1):472. PubMed ID: 30679553
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of human ovarian follicular fluid derived mesenchymal stem cells in chitosan/PCL/Zn scaffold for bone tissue regeneration.
    Chandramohan Y; Jeganathan K; Sivanesan S; Koka P; Amritha TMS; Vimalraj S; Dhanasekaran A
    Life Sci; 2021 Jan; 264():118502. PubMed ID: 33031825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect.
    Zhang Y; Wang C; Fu L; Ye S; Wang M; Zhou Y
    Molecules; 2019 Apr; 24(9):. PubMed ID: 31035401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of hierarchical porous bioceramic scaffolds with controlled micro/nano surface topography for accelerating bone regeneration.
    Zhang H; Zhang H; Xiong Y; Dong L; Li X
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112437. PubMed ID: 34702522
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis.
    Niu H; Ma Y; Wu G; Duan B; Wang Y; Yuan Y; Liu C
    Biomaterials; 2019 Sep; 216():119216. PubMed ID: 31138454
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration.
    Zhang W; Shi W; Wu S; Kuss M; Jiang X; Untrauer JB; Reid SP; Duan B
    Biofabrication; 2020 Jun; 12(3):035020. PubMed ID: 32369796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sema3A and HIF1α co-overexpressed iPSC-MSCs/HA scaffold facilitates the repair of calvarial defect in a mouse model.
    Li J; Wang T; Li C; Wang Z; Wang P; Zheng L
    J Cell Physiol; 2020 Oct; 235(10):6754-6766. PubMed ID: 32012286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.