BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33984736)

  • 1. Towards a mathematical framework to inform neural network modelling via polynomial regression.
    Morala P; Cifuentes JA; Lillo RE; Ucar I
    Neural Netw; 2021 Oct; 142():57-72. PubMed ID: 33984736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing general partial differential equations using polynomial and neural networks.
    Zjavka L; Pedrycz W
    Neural Netw; 2016 Jan; 73():58-69. PubMed ID: 26547244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations.
    Belomestny D; Naumov A; Puchkin N; Samsonov S
    Neural Netw; 2023 Apr; 161():242-253. PubMed ID: 36774863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polynomial harmonic GMDH learning networks for time series modeling.
    Nikolaev NY; Iba H
    Neural Netw; 2003 Dec; 16(10):1527-40. PubMed ID: 14622880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NN2Poly: A Polynomial Representation for Deep Feed-Forward Artificial Neural Networks.
    Morala P; Cifuentes JA; Lillo RE; Ucar I
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37962996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HOPE: High-Order Polynomial Expansion of Black-Box Neural Networks.
    Xiao T; Zhang W; Cheng Y; Suo J
    IEEE Trans Pattern Anal Mach Intell; 2024 May; PP():. PubMed ID: 38728128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Logistic regression paradigm for training a single-hidden layer feedforward neural network. Application to gene expression datasets for cancer research.
    Belciug S
    J Biomed Inform; 2020 Feb; 102():103373. PubMed ID: 31901506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The generalized extreme learning machines: Tuning hyperparameters and limiting approach for the Moore-Penrose generalized inverse.
    Kim M
    Neural Netw; 2021 Dec; 144():591-602. PubMed ID: 34634606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructive feedforward neural networks using hermite polynomial activation functions.
    Ma L; Khorasani K
    IEEE Trans Neural Netw; 2005 Jul; 16(4):821-33. PubMed ID: 16121724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximation rates for neural networks with encodable weights in smoothness spaces.
    Gühring I; Raslan M
    Neural Netw; 2021 Feb; 134():107-130. PubMed ID: 33310376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Polynomial Neural Networks.
    Chrysos GG; Moschoglou S; Bouritsas G; Deng J; Panagakis Y; Zafeiriou S
    IEEE Trans Pattern Anal Mach Intell; 2022 Aug; 44(8):4021-4034. PubMed ID: 33571091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning method for extracting symbolic knowledge from recurrent neural networks.
    Vahed A; Omlin CW
    Neural Comput; 2004 Jan; 16(1):59-71. PubMed ID: 15006023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of deep convolutional neural networks III: Approximating radial functions.
    Mao T; Shi Z; Zhou DX
    Neural Netw; 2021 Dec; 144():778-790. PubMed ID: 34688019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability Analysis for Delayed Neural Networks via Improved Auxiliary Polynomial-Based Functions.
    Li Z; Yan H; Zhang H; Zhan X; Huang C
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2562-2568. PubMed ID: 30575549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zeroing polynomials using modified constrained neural network approach.
    Huang DS; Ip HH; Law KC; Chi Z
    IEEE Trans Neural Netw; 2005 May; 16(3):721-32. PubMed ID: 15940999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NN-Poly: Approximating common neural networks with Taylor polynomials to imbue dynamical system constraints.
    Zhu F; Jing D; Leve F; Ferrari S
    Front Robot AI; 2022; 9():968305. PubMed ID: 36425848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Neural Network-Based Multi-Frequency Path Loss Prediction Model from 0.8 GHz to 70 GHz.
    Nguyen C; Cheema AA
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing feedforward neural networks using independent component analysis on hidden units.
    Satoh S; Yamagishi K; Takahashi T
    PLoS One; 2023; 18(8):e0290435. PubMed ID: 37616212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.