These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33984763)
1. Peeling back the layers: Investigating the effects of polyelectrolyte layering on surface structure and stability of oil-in-water nanoemulsions. Tran E; Mapile AN; Richmond GL J Colloid Interface Sci; 2021 Oct; 599():706-716. PubMed ID: 33984763 [TBL] [Abstract][Full Text] [Related]
2. Probing the Molecular Structure of Coadsorbed Polyethylenimine and Charged Surfactants at the Nanoemulsion Droplet Surface. Tran E; Carpenter AP; Richmond GL Langmuir; 2020 Aug; 36(31):9081-9089. PubMed ID: 32668900 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces. Hensel JK; Carpenter AP; Ciszewski RK; Schabes BK; Kittredge CT; Moore FG; Richmond GL Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13351-13356. PubMed ID: 28760977 [TBL] [Abstract][Full Text] [Related]
4. Come Together: Molecular Details into the Synergistic Effects of Polymer-Surfactant Adsorption at the Oil/Water Interface. Schabes BK; Altman RM; Richmond GL J Phys Chem B; 2018 Sep; 122(36):8582-8590. PubMed ID: 30113831 [TBL] [Abstract][Full Text] [Related]
5. Interfacial Steric and Molecular Bonding Effects Contributing to the Stability of Neutrally Charged Nanoemulsions. Tran E; Richmond GL Langmuir; 2021 Nov; 37(43):12643-12653. PubMed ID: 34662126 [TBL] [Abstract][Full Text] [Related]
6. How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces. Carpenter AP; Altman RM; Tran E; Richmond GL J Phys Chem B; 2020 May; 124(20):4234-4245. PubMed ID: 32378899 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Hydrophobically Modified Polyacrylamide in Mixed Polymer-Gemini Surfactant Systems for Enhanced Oil Recovery Application. Bhut PR; Pal N; Mandal A ACS Omega; 2019 Dec; 4(23):20164-20177. PubMed ID: 31815217 [TBL] [Abstract][Full Text] [Related]
8. Formation and surface-stabilizing contributions to bare nanoemulsions created with negligible surface charge. Carpenter AP; Tran E; Altman RM; Richmond GL Proc Natl Acad Sci U S A; 2019 May; 116(19):9214-9219. PubMed ID: 31019075 [TBL] [Abstract][Full Text] [Related]
9. Stabilization of Dispersed Oil Droplets in Nanoemulsions by Synergistic Effects of the Gemini Surfactant, PHPA Polymer, and Silica Nanoparticle. Pal N; Kumar N; Mandal A Langmuir; 2019 Feb; 35(7):2655-2667. PubMed ID: 30672301 [TBL] [Abstract][Full Text] [Related]
10. Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: Modeling and influence of the oil phase, surfactant and sonication. Badawy MEI; Saad ASA; Tayeb EHM; Mohammed SA; Abd-Elnabi AD J Environ Sci Health B; 2017 Dec; 52(12):896-911. PubMed ID: 29111904 [TBL] [Abstract][Full Text] [Related]
11. Effects of Salt-Induced Charge Screening on AOT Adsorption to the Planar and Nanoemulsion Oil-Water Interfaces. Carpenter AP; Foster MJ; Jones KK; Richmond GL Langmuir; 2021 Jul; 37(29):8658-8666. PubMed ID: 34260854 [TBL] [Abstract][Full Text] [Related]
12. Dynamic Duo: Vibrational Sum Frequency Scattering Investigation of pH-Switchable Carboxylic Acid/Carboxylate Surfactants on Nanodroplet Surfaces. Foster MJ; Carpenter AP; Richmond GL J Phys Chem B; 2021 Aug; 125(33):9629-9640. PubMed ID: 34402616 [TBL] [Abstract][Full Text] [Related]
13. Molecular ordering of layer-by-layer polyelectrolyte films studied by sum-frequency vibrational spectroscopy. Silva HS; Miranda PB J Phys Chem B; 2009 Jul; 113(30):10068-71. PubMed ID: 19588893 [TBL] [Abstract][Full Text] [Related]
14. Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Mohamadi Saani S; Abdolalizadeh J; Zeinali Heris S Ultrason Sonochem; 2019 Jul; 55():86-95. PubMed ID: 31084795 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of polymer-surfactant mixtures at the oil-water interface. Tucker IM; Petkov JT; Jones C; Penfold J; Thomas RK; Rogers SE; Terry AE; Heenan RK; Grillo I Langmuir; 2012 Oct; 28(42):14974-82. PubMed ID: 23025239 [TBL] [Abstract][Full Text] [Related]
16. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
17. Nanoemulsions Stable against Ostwald Ripening. Guo Y; Zhang X; Wang X; Zhang L; Xu Z; Sun D Langmuir; 2024 Jan; 40(2):1364-1372. PubMed ID: 38175958 [TBL] [Abstract][Full Text] [Related]
18. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor. Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549 [TBL] [Abstract][Full Text] [Related]
19. Polymer and particle adsorption at the PDMS droplet-water interface. Prestidge CA; Barnes T; Simovic S Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933 [TBL] [Abstract][Full Text] [Related]
20. Baru oil (Dipteryx alata vog.) applied in the formation of O/W nanoemulsions: A study of physical-chemical, rheological and interfacial properties. Paulo LAO; Fernandes RN; Simiqueli AA; Rocha F; Dias MMDS; Minim VPR; Minim LA; Vidigal MCTR Food Res Int; 2023 Aug; 170():112961. PubMed ID: 37316008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]