These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33984842)

  • 1. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors.
    Calvet AG; Dave M; Franck JA
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of changing synchronization in propulsive performance of side-by-side pitching foils.
    Gungor A; Hemmati A
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33571986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propulsive performance of biologically inspired flapping foils at high Reynolds numbers.
    Techet AH
    J Exp Biol; 2008 Jan; 211(Pt 2):274-9. PubMed ID: 18165255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow interactions of two- and three-dimensional networked bio-inspired control elements in an in-line arrangement.
    Kurt M; Moored KW
    Bioinspir Biomim; 2018 May; 13(4):045002. PubMed ID: 29671409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wake symmetry impacts the performance of tandem hydrofoils during in-phase and out-of-phase oscillations differently.
    Gungor A; Hemmati A
    Phys Rev E; 2020 Oct; 102(4-1):043104. PubMed ID: 33212661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel.
    Buchholz JH; Smits AJ
    J Fluid Mech; 2008 Apr; 603():331-365. PubMed ID: 19746195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Route to transition in propulsive performance of oscillating foil.
    Verma S; Hemmati A
    Phys Rev E; 2022 Apr; 105(4-2):045102. PubMed ID: 35590627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
    Thandiackal R; Lauder G
    Elife; 2023 Feb; 12():. PubMed ID: 36744863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional scaling laws of cetacean propulsion characterize the hydrodynamic interplay of flukes' shape and kinematics.
    Ayancik F; Fish FE; Moored KW
    J R Soc Interface; 2020 Feb; 17(163):20190655. PubMed ID: 32093541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time parametric estimation of periodic wake-foil interactions using bioinspired pressure sensing and machine learning.
    Xu WH; Xu GD; Shan L
    Bioinspir Biomim; 2022 Mar; 17(2):. PubMed ID: 34996050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swimming dynamics and propulsive efficiency of squids throughout ontogeny.
    Bartol IK; Krueger PS; Thompson JT; Stewart WJ
    Integr Comp Biol; 2008 Dec; 48(6):720-33. PubMed ID: 21669828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.
    Bartol IK; Krueger PS; Jastrebsky RA; Williams S; Thompson JT
    J Exp Biol; 2016 Feb; 219(Pt 3):392-403. PubMed ID: 26643088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure.
    Cheng JY; Chahine GL
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Dec; 131(1):51-60. PubMed ID: 11733166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex interactions with flapping wings and fins can be unpredictable.
    Lentink D; Van Heijst GF; Muijres FT; Van Leeuwen JL
    Biol Lett; 2010 Jun; 6(3):394-7. PubMed ID: 20129947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulence: does vorticity affect the structure and shape of body and fin propulsors?
    Webb PW; Cotel AJ
    Integr Comp Biol; 2010 Dec; 50(6):1155-66. PubMed ID: 21558264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuna locomotion: a computational hydrodynamic analysis of finlet function.
    Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H
    J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontogenetic propulsive transitions by Sarsia tubulosa medusae.
    Katija K; Colin SP; Costello JH; Jiang H
    J Exp Biol; 2015 Aug; 218(Pt 15):2333-43. PubMed ID: 26026040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow Interactions Between Low Aspect Ratio Hydrofoils in In-line and Staggered Arrangements.
    Kurt M; Eslam Panah A; Moored KW
    Biomimetics (Basel); 2020 Mar; 5(2):. PubMed ID: 32244490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.