These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 33984920)

  • 1. Distinction of electromagnetically induced transparency and Autler-Towners splitting in a Rydberg-involved ladder-type cold atom system.
    Ji Z; Jiao Y; Xue Y; Hao L; Zhao J; Jia S
    Opt Express; 2021 Apr; 29(8):11406-11415. PubMed ID: 33984920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-imaginary spectrum decomposition of the transparency spectra in microwave dressed Rydberg systems.
    Niu W; Qin L; Shi Z; Zhang Y; Xia S; Feng X; Wang Q; Liu J; Zhao Z; Zhu Z; Li W; Zhao X
    Opt Express; 2024 Jun; 32(12):21374-21388. PubMed ID: 38859492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic-field-induced splitting of Rydberg Electromagnetically Induced Transparency and Autler-Townes spectra in
    Li X; Cui Y; Hao J; Zhou F; Wang Y; Jia F; Zhang J; Xie F; Zhong Z
    Opt Express; 2023 Nov; 31(23):38165-38178. PubMed ID: 38017929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast simulation for interacting four-level Rydberg atoms: electromagnetically induced transparency and Autler-Townes splitting.
    Xu XYI; Xie G; Ma J; Ying L; Yuan J; Huang Z; Sha WEI
    Opt Express; 2024 Jun; 32(12):21755-21766. PubMed ID: 38859522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced spectral profile in the study of Doppler-broadened Rydberg ensembles.
    Wu BH; Chuang YW; Chen YH; Yu JC; Chang MS; Yu IA
    Sci Rep; 2017 Aug; 7(1):9726. PubMed ID: 28852012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of relative transition strengths of
    Bao S; Zhang H; Zhang L; Xiao L; Jia S
    Sci Rep; 2024 Apr; 14(1):7779. PubMed ID: 38565605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems.
    Zhang H; Ma Y; Liao K; Yang W; Liu Z; Ding D; Yan H; Li W; Zhang L
    Sci Bull (Beijing); 2024 May; 69(10):1515-1535. PubMed ID: 38614855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetically induced transparency in inhomogeneously broadened solid media.
    Fan HQ; Kagalwala KH; Polyakov SV; Migdall AL; Goldschmidt EA
    Phys Rev A (Coll Park); 2019 May; 99(5):. PubMed ID: 38510460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate measurement of the frequency offset of the laser based on electromagnetically induced transparency.
    Ren S; Tang Y; Yang C; Wang S; Zhou H
    Appl Opt; 2024 May; 63(15):4219-4225. PubMed ID: 38856516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super low-frequency electric field measurement based on Rydberg atoms.
    Li L; Jiao Y; Hu J; Li H; Shi M; Zhao J; Jia S
    Opt Express; 2023 Aug; 31(18):29228-29234. PubMed ID: 37710727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced microwave metrology using an optical grating in Rydberg atoms.
    Zhao S; Yin Z; Song X; Jia Z; Wang L; Chen B; Zeng Q; Peng Y
    Appl Opt; 2023 May; 62(14):3747-3752. PubMed ID: 37706992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Rabi dynamics with a short-wavelength free-electron laser.
    Nandi S; Olofsson E; Bertolino M; Carlström S; Zapata F; Busto D; Callegari C; Di Fraia M; Eng-Johnsson P; Feifel R; Gallician G; Gisselbrecht M; Maclot S; Neoričić L; Peschel J; Plekan O; Prince KC; Squibb RJ; Zhong S; Demekhin PV; Meyer M; Miron C; Badano L; Danailov MB; Giannessi L; Manfredda M; Sottocorona F; Zangrando M; Dahlström JM
    Nature; 2022 Aug; 608(7923):488-493. PubMed ID: 35978126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave Electrometry with Multi-Photon Coherence in Rydberg Atoms.
    Yin Z; Li Q; Song X; Jia Z; Parniak M; Lu X; Peng Y
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical quantum memory based on electromagnetically induced transparency.
    Ma L; Slattery O; Tang X
    J Opt; 2017 Apr; 19(4):. PubMed ID: 28828172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave coupled Zeeman splitting spectroscopy of a cesium nP
    Fan J; Bai J; Song R; Jiao Y; Zhao J; Jia S
    Opt Express; 2024 Mar; 32(6):9297-9305. PubMed ID: 38571167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Suppression of Quantum Dephasing in Resonantly Driven Ensembles.
    He C; Jones RR
    Phys Rev Lett; 2024 Jan; 132(4):043201. PubMed ID: 38335328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetically Induced Transparency in Media with Rydberg Excitons 2: Cross-Kerr Modulation.
    Ziemkiewicz D; Zielińska-Raczyńska S
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control and Entanglement of Individual Rydberg Atoms near a Nanoscale Device.
    Ocola PL; Dimitrova I; Grinkemeyer B; Guardado-Sanchez E; Đorđević T; Samutpraphoot P; Vuletić V; Lukin MD
    Phys Rev Lett; 2024 Mar; 132(11):113601. PubMed ID: 38563952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Entanglement via Incoherent Collisions.
    Yang X; Cheng M; Xiao M
    Phys Rev Lett; 2024 Feb; 132(6):063601. PubMed ID: 38394603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dephasing of Strong-Field-Driven Excitonic Autler-Townes Doublets Revealed by Time- and Spectrum-Resolved Quantum-Path Interferometry.
    Liu Y; Zhu B; Jiang S; Huang S; Luo M; Zhang S; Yan H; Zhang Y; Lu R; Tao Z
    Phys Rev Lett; 2024 Jul; 133(2):026901. PubMed ID: 39073979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.