These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33984952)

  • 1. Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields.
    Zhang W; Wang DY; Bai CH; Wang T; Zhang S; Wang HF
    Opt Express; 2021 Apr; 29(8):11773-11783. PubMed ID: 33984952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field.
    Zhang W; Wang T; Han X; Zhang S; Wang HF
    Opt Express; 2022 Mar; 30(7):10969-10980. PubMed ID: 35473050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency entanglement of microwave fields in cavity opto-magnomechanical systems.
    Di K; Tan S; Wang L; Cheng A; Wang X; Liu Y; Du J
    Opt Express; 2023 Aug; 31(18):29491-29503. PubMed ID: 37710748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics.
    Li J; Zhu SY; Agarwal GS
    Phys Rev Lett; 2018 Nov; 121(20):203601. PubMed ID: 30500215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon laser in a cavity magnomechanical system.
    Ding MS; Zheng L; Li C
    Sci Rep; 2019 Oct; 9(1):15723. PubMed ID: 31673054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields.
    Yu M; Shen H; Li J
    Phys Rev Lett; 2020 May; 124(21):213604. PubMed ID: 32530657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distant entanglement via photon hopping in a coupled cavity magnomechanical system.
    Sohail A; Peng JX; Hidki A; Khalid M; Singh SK
    Sci Rep; 2023 Dec; 13(1):21840. PubMed ID: 38071389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of robust optical entanglement in cavity optomagnonics.
    Xie H; He LW; Liao CG; Chen ZH; Lin XM
    Opt Express; 2023 Feb; 31(5):7994-8004. PubMed ID: 36859918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity magnomechanics.
    Zhang X; Zou CL; Jiang L; Tang HX
    Sci Adv; 2016 Mar; 2(3):e1501286. PubMed ID: 27034983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneously enhanced magnomechanical cooling and entanglement assisted by an auxiliary microwave cavity.
    Liu ZQ; Liu L; Meng ZZ; Tan L; Liu WM
    Opt Express; 2024 Jan; 32(1):722-741. PubMed ID: 38175094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Bistability in Kerr-modified Cavity Magnomechanics.
    Shen RC; Li J; Fan ZY; Wang YP; You JQ
    Phys Rev Lett; 2022 Sep; 129(12):123601. PubMed ID: 36179162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscopic entanglement between ferrimagnetic magnons and atoms via crossed optical cavities.
    Di K; Wang X; Xia H; Zhao Y; Liu Y; Cheng A; Du J
    Opt Lett; 2024 Jun; 49(11):2878-2881. PubMed ID: 38824282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving mechanical cooling by using magnetic thermal noise in a cavity-magnomechanical system.
    Yang Z; Zhao C; Peng R; Yang J; Zhou L
    Opt Lett; 2023 Jan; 48(2):375-378. PubMed ID: 36638461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezing microwaves by magnetostriction.
    Li J; Wang YP; You JQ; Zhu SY
    Natl Sci Rev; 2023 May; 10(5):nwac247. PubMed ID: 37228254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensive Cavity-Magnomechanical Cooling of a Levitated Macromagnet.
    Kani A; Sarma B; Twamley J
    Phys Rev Lett; 2022 Jan; 128(1):013602. PubMed ID: 35061494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement generation and steering implementation in a double-cavity-magnon hybrid system.
    Cong LJ; Luo YX; Zheng ZG; Liu HY; Ming Y; Yang RC
    Opt Express; 2023 Oct; 31(21):34021-34033. PubMed ID: 37859167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid two-mode squeezing of microwave and optical fields using optically pumped graphene layers.
    Qasymeh M; Eleuch H
    Sci Rep; 2020 Oct; 10(1):16676. PubMed ID: 33028864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback Control of Quantum Correlations in a Cavity Magnomechanical System with Magnon Squeezing.
    Amazioug M; Singh S; Teklu B; Asjad M
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically controllable slow light based on magnetostrictive forces.
    Kong C; Wang B; Liu ZX; Xiong H; Wu Y
    Opt Express; 2019 Feb; 27(4):5544-5556. PubMed ID: 30876185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entanglement enhancement and EPR steering based on a PT-symmetric-like cavity-opto-magnomechanical hybrid system.
    Luo YX; Cong LJ; Zheng ZG; Liu HY; Ming Y; Yang RC
    Opt Express; 2023 Oct; 31(21):34764-34778. PubMed ID: 37859225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.