These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33984968)

  • 1. Geometric control over surface plasmon polariton out-coupling pathways in metal-insulator-metal tunnel junctions.
    Radulescu A; Makarenko KS; Hoang TX; Kalathingal V; Duffin TJ; Chu HS; Nijhuis CA
    Opt Express; 2021 Apr; 29(8):11987-12000. PubMed ID: 33984968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Surface Plasmon Polariton Excitation and Control over Outcoupling Mechanisms in Metal-Insulator-Metal Tunneling Junctions.
    Makarenko KS; Hoang TX; Duffin TJ; Radulescu A; Kalathingal V; Lezec HJ; Chu HS; Nijhuis CA
    Adv Sci (Weinh); 2020 Apr; 7(8):1900291. PubMed ID: 32328407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMOS-Compatible Electronic-Plasmonic Transducers Based on Plasmonic Tunnel Junctions and Schottky Diodes.
    Wang F; Liu Y; Hoang TX; Chu HS; Chua SJ; Nijhuis CA
    Small; 2022 Jan; 18(1):e2105684. PubMed ID: 34741404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities.
    Caligiuri V; Palei M; Biffi G; Artyukhin S; Krahne R
    Nano Lett; 2019 May; 19(5):3151-3160. PubMed ID: 30920844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks.
    Zhang M; Wang Z
    Opt Express; 2019 Jan; 27(1):303-321. PubMed ID: 30645376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Anisotropy in van der Waals materials: Impact on Direct Excitation of Plasmons and Photons by Quantum Tunneling.
    Wang Z; Kalathingal V; Hoang TX; Chu HS; Nijhuis CA
    Light Sci Appl; 2021 Nov; 10(1):230. PubMed ID: 34750346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significantly increased surface plasmon polariton mode excitation using a multilayer insulation structure in a metal-insulator-metal plasmonic waveguide.
    Yang H; Li J; Xiao G
    Appl Opt; 2014 Jun; 53(17):3642-6. PubMed ID: 24921127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable directional emission from electrically driven nano-strip metal-insulator-metal tunnel junctions.
    Kishen S; Tapar J; Emani NK
    Nanoscale Adv; 2022 Aug; 4(17):3609-3616. PubMed ID: 36134358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient tunable and localized on-chip electrical plasmon source using protruded metal-insulator-metal structure.
    Phua WK; Akimov Y; Wu L; Chu HS; Bai P; Danner A
    Opt Express; 2016 May; 24(10):10663-74. PubMed ID: 27409887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waveguide-Integrated Light-Emitting Metal-Insulator-Graphene Tunnel Junctions.
    Liu L; Krasavin AV; Li J; Li L; Yang L; Guo X; Dai D; Zayats AV; Tong L; Wang P
    Nano Lett; 2023 May; 23(9):3731-3738. PubMed ID: 37097286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refractive Index Sensor Based on the Fano Resonance in Metal-Insulator-Metal Waveguides Coupled with a Whistle-Shaped Cavity.
    Li B; Sun H; Zhang H; Li Y; Zang J; Cao X; Zhu X; Zhao X; Zhang Z
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation-Invariant Space-Time Plasmonic Pulse in Subwavelength MIM Waveguide.
    Cho ES; Lee SY
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic wavelength splitter based on a metal-insulator-metal waveguide with a graded grating coupler.
    Yu Y; Si J; Ning Y; Sun M; Deng X
    Opt Lett; 2017 Jan; 42(2):187-190. PubMed ID: 28081068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoantennas Inversely Designed to Couple Free Space and a Metal-Insulator-Metal Waveguide.
    Han Y; Lin Y; Ma W; Korvink JG; Duan H; Deng Y
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral and mode properties of surface plasmon polariton waveguides studied by near-field excitation and leakage-mode radiation measurement.
    Pan MY; Lin EH; Wang L; Wei PK
    Nanoscale Res Lett; 2014; 9(1):430. PubMed ID: 25177228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial.
    Gao X; Zhou L; Cui TJ
    Sci Rep; 2015 Mar; 5():9250. PubMed ID: 25783166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Plane Radiation of Surface Plasmon Polaritons Excited by Free Electrons.
    Zhang P; Dong Y; Li X; Cao X; Yang Y; Yu G; Yang S; Wang S; Gong Y
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic modulation of surface plasmon modes in magnetoplasmonic metal-insulator-metal cavities.
    Ferreiro-Vila E; García-Martín JM; Cebollada A; Armelles G; González MU
    Opt Express; 2013 Feb; 21(4):4917-30. PubMed ID: 23482025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon polariton beams from an electrically excited plasmonic crystal.
    Canneson D; Le Moal E; Cao S; Quélin X; Dallaporta H; Dujardin G; Boer-Duchemin E
    Opt Express; 2016 Nov; 24(23):26186-26200. PubMed ID: 27857355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-confined Propagating Exciton-Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs.
    Wang Y; Luo A; Zhu C; Li Z; Wu X
    Nanoscale Res Lett; 2022 Nov; 17(1):109. PubMed ID: 36399213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.