These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 33985004)

  • 1. Reliable model to estimate the profile of the refractive index structure parameter (C
    Wu S; Wu X; Su C; Yang Q; Xu J; Luo T; Huang C; Qing C
    Opt Express; 2021 Apr; 29(8):12454-12470. PubMed ID: 33985004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of data spatial vertical resolution on the estimation of vertical profiles of the refractive index structure constant.
    Hu X; Wu X; Yang Q; Guo Y; Wang Z; Yan C; Qiao Z; Qing C; Li X; Qian X
    Opt Express; 2023 Jul; 31(16):25815-25828. PubMed ID: 37710457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple approach for estimating the refractive index structure parameter (Cn²) profile in the atmosphere.
    Basu S
    Opt Lett; 2015 Sep; 40(17):4130-3. PubMed ID: 26368729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating and measurement of atmospheric optical turbulence according to balloon-borne radiosonde for three sites in China.
    Bi C; Qian X; Liu Q; Zhu W; Li X; Luo T; Wu X; Qing C
    J Opt Soc Am A Opt Image Sci Vis; 2020 Nov; 37(11):1785-1794. PubMed ID: 33175755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation and characterization of atmospheric turbulence in the free atmosphere above the Tibetan Plateau using the Thorpe method.
    Hu X; Wu X; Yang Q; Guo Y; Wang Z; Qing C; Li X; Qian X
    Appl Opt; 2023 Feb; 62(4):1115-1122. PubMed ID: 36821172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computational Model of Cn2 Profile Inversion for Atmospheric Laser Communication in the Vertical Path.
    Yao H; Cao Y; Wang W; Jiang Q; Cao J; Hao Q; Liu Z; Zhang P; Chang Y; Zhang G; Geng T
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean.
    Qing C; Wu X; Li X; Zhu W; Qiao C; Rao R; Mei H
    Opt Express; 2016 Jun; 24(12):13303-15. PubMed ID: 27410347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of maritime measurements of
    Mahon R; Moore CI; Ferraro MS; Rabinovich WS; Frederickson PA
    Appl Opt; 2020 Nov; 59(33):10599-10612. PubMed ID: 33361995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model.
    Qing C; Wu X; Huang H; Tian Q; Zhu W; Rao R; Li X
    Opt Express; 2016 Sep; 24(18):20424-36. PubMed ID: 27607648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple method to estimate the optical turbulence over snow and ice.
    Yang Q; Wu X; Wu S; Han Y; Su C; Zhang S; Qing C
    J Opt Soc Am A Opt Image Sci Vis; 2021 Oct; 38(10):1483-1488. PubMed ID: 34612978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols.
    Anand N; Satheesh SK; Krishna Moorthy K
    Opt Lett; 2017 Jul; 42(14):2714-2717. PubMed ID: 28708151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending a surface-layer Cn2 model for strongly stratified conditions utilizing a numerically generated turbulence dataset.
    He P; Basu S
    Opt Express; 2016 May; 24(9):9574-82. PubMed ID: 27137570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation and characterization of the refractive index structure constant within the marine atmospheric boundary layer.
    Zhang H; Zhu L; Sun G; Zhang K; Xu M; Liu N; Chen D; Wu Y; Cui S; Luo T; Li X; Weng N
    Appl Opt; 2022 Nov; 61(33):9762-9772. PubMed ID: 36606804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New $\text{C}_{n}^{2}$ statistical model based on first radiosonde turbulence observation over Lhasa.
    Han Y; Wu X; Luo T; Qing C; Yang Q; Jin X; Liu N; Wu S; Su C
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):995-1001. PubMed ID: 32543601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PML: a generalized monitor of atmospheric turbulence profile with high vertical resolution.
    Chabé J; Aristidi E; Ziad A; Lantéri H; Fanteï-Caujolle Y; Giordano C; Borgnino J; Marjani M; Renaud C
    Appl Opt; 2020 Sep; 59(25):7574-7584. PubMed ID: 32902457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path-averaged Cn2 estimation using a laser-and-corner-cube system.
    Cole WP; Marciniak MA
    Appl Opt; 2009 Jul; 48(21):4256-62. PubMed ID: 19623240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive niche-genetic algorithm based on backpropagation neural network for atmospheric turbulence forecasting.
    Su C; Wu X; Luo T; Wu S; Qing C
    Appl Opt; 2020 Apr; 59(12):3699-3705. PubMed ID: 32400493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements.
    Bendersky S; Kopeika NS; Blaunstein N
    Appl Opt; 2004 Jul; 43(20):4070-9. PubMed ID: 15285098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the turbulence profile in the lower atmospheric boundary layer.
    van Iersel M; Paulson DA; Wu C; Ferlic NA; Rzasa JR; Davis CC; Walker M; Bowden M; Spychalsky J; Titus F
    Appl Opt; 2019 Sep; 58(25):6934-6941. PubMed ID: 31503665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-learning informed macro-meteorological models for the near-maritime environment.
    Jellen C; Oakley M; Nelson C; Burkhardt J; Brownell C
    Appl Opt; 2021 Apr; 60(11):2938-2951. PubMed ID: 33983186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.