These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 33985004)

  • 21. Mesoscale optical turbulence simulations above Tibetan Plateau: first attempt.
    Qing C; Wu X; Li X; Luo T; Su C; Zhu W
    Opt Express; 2020 Feb; 28(4):4571-4586. PubMed ID: 32121691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration.
    Tikhamarine Y; Malik A; Souag-Gamane D; Kisi O
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30001-30019. PubMed ID: 32445152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of refractive index structure parameter estimation for certain infrared bands.
    Sivaslıgil M; Erol CB; Polat ÖM; Sarı H
    Appl Opt; 2013 May; 52(14):3127-33. PubMed ID: 23669824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship of meteorological factors and human brucellosis in Hebei province, China.
    Cao LT; Liu HH; Li J; Yin XD; Duan Y; Wang J
    Sci Total Environ; 2020 Feb; 703():135491. PubMed ID: 31740063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa, Hawaii.
    Wang Y; Basu S
    Opt Lett; 2016 May; 41(10):2334-7. PubMed ID: 27176996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning informed predictor importance measures of environmental parameters in maritime optical turbulence.
    Jellen C; Burkhardt J; Brownell C; Nelson C
    Appl Opt; 2020 Jul; 59(21):6379-6389. PubMed ID: 32749303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influencing factors and prediction of ambient Peroxyacetyl nitrate concentration in Beijing, China.
    Zhang B; Zhao B; Zuo P; Huang Z; Zhang J
    J Environ Sci (China); 2019 Mar; 77():189-197. PubMed ID: 30573082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparisons of forward-in-time and backward-in-time Lagrangian stochastic dispersion models for micro-scale atmospheric dispersion.
    Li S; Du K
    J Air Waste Manag Assoc; 2020 Apr; 70(4):425-435. PubMed ID: 32039658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ESTIMATION OF ATMOSPHERIC MIXING HEIGHTS OVER LARGE AREAS USING DATA FROM AIRPORT METEOROLOGICAL STATIONS.
    Cheng SY; Jin YQ; Liu L; Huang GH; Hao RX; Jansson CRE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(6):991-1007. PubMed ID: 28880802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wavelength correction of refractivity variation measurements.
    Burchett LR; Fiorino ST
    Opt Express; 2013 Dec; 21(26):31990-7. PubMed ID: 24514794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the Hufnagel-Andrews-Phillips refractive index structure parameter model using turbulent intensity.
    Stotts LB; Andrews LC
    Opt Express; 2023 Apr; 31(9):14265-14277. PubMed ID: 37157294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35  km altitude.
    Shen F; Xie C; Qiu C; Wang B
    Appl Opt; 2018 Nov; 57(31):9328-9340. PubMed ID: 30461973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A statistical-based approach for acoustic tomography of the atmosphere.
    Kolouri S; Azimi-Sadjadi MR; Ziemann A
    J Acoust Soc Am; 2014 Jan; 135(1):104-14. PubMed ID: 24437750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].
    Ma PF; Chen LF; Zou MM; Zhang Y; Tao MH; Wang ZL; Su L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3344-9. PubMed ID: 26964207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China.].
    Wang H; Chen HH; Tang LS; Wang JH; Tang HY
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):93-102. PubMed ID: 29692017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Outer scale of turbulence appropriate to modeling refractive-index structure profiles.
    Coulman CE; Vernin J; Coqueugniot Y; Caccia JL
    Appl Opt; 1988 Jan; 27(1):155-60. PubMed ID: 20523563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wind Profiling in the Lower Atmosphere from Wind-Induced Perturbations to Multirotor UAS.
    González-Rocha J; De Wekker SFJ; Ross SD; Woolsey CA
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data.
    Banakh VA; Smalikho IN; Rahm S
    Opt Lett; 2014 Aug; 39(15):4321-4. PubMed ID: 25078167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monthly evapotranspiration estimation using optimal climatic parameters: efficacy of hybrid support vector regression integrated with whale optimization algorithm.
    Tikhamarine Y; Malik A; Pandey K; Sammen SS; Souag-Gamane D; Heddam S; Kisi O
    Environ Monit Assess; 2020 Oct; 192(11):696. PubMed ID: 33040211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.