These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33985039)

  • 1. Infrared broadband enhancement of responsivity in Ge photodetectors decorated with Au nanoparticles.
    Wang L; Wang B; Zhang Y; Meng L; Sun H; Liu T; Zhang N; Jiang Z; Hu H
    Opt Express; 2021 Apr; 29(9):12941-12949. PubMed ID: 33985039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Wavelength-Selective Enhancement of Responsivity in Ag Nanoparticle-Modified ZnO UV Photodetector.
    Wang X; Liu K; Chen X; Li B; Jiang M; Zhang Z; Zhao H; Shen D
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5574-5579. PubMed ID: 28116905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector.
    Wang L; He SJ; Wang KY; Luo HH; Hu JG; Yu YQ; Xie C; Wu CY; Luo LB
    Nanotechnology; 2018 Dec; 29(50):505203. PubMed ID: 30240364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction.
    Dai M; Chen H; Feng R; Feng W; Hu Y; Yang H; Liu G; Chen X; Zhang J; Xu CY; Hu P
    ACS Nano; 2018 Aug; 12(8):8739-8747. PubMed ID: 30095888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-free attachment of plasmonic Au nanoparticles on ZnO nanowire to make a high-performance broadband photodetector using a laser-based method.
    Ghimire RR; Nath R; Neogy RK; Raychaudhuri AK
    Nanotechnology; 2017 Jul; 28(29):295703. PubMed ID: 28656902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon enhanced GeSn photodetectors operating at 2 µm.
    Zhou H; Zhang L; Tong J; Wu S; Son B; Chen Q; Zhang DH; Tan CS
    Opt Express; 2021 Mar; 29(6):8498-8509. PubMed ID: 33820296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Understanding of Charge-Transfer-Mediated Fe
    Das R; Sugimoto H; Fujii M; Giri PK
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4755-4768. PubMed ID: 31914727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors.
    Tian W; Zhi C; Zhai T; Wang X; Liao M; Li S; Chen S; Golberg D; Bando Y
    Nanoscale; 2012 Oct; 4(20):6318-24. PubMed ID: 22936172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of SWIR Silicon-Based Photodetection by Using Thin ITO/Au/Au Nanoparticles/n-Si Structure.
    Li X; Deng Z; Ma Z; Jiang Y; Du C; Jia H; Wang W; Chen H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadening spectral responses and achieving environmental stability in SnS
    Khan MF; Sadaqat S; Khan MA; Rehman S; Subhani WS; Ouladsmane M; Rehman MA; Ali F; Lipsanen H; Sun Z; Eom J; Ahmed F
    Nanoscale; 2024 Feb; 16(7):3622-3630. PubMed ID: 38273810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS-NIR region.
    Rohizat NS; Ripain AHA; Lim CS; Tan CL; Zakaria R
    Sci Rep; 2021 Oct; 11(1):19688. PubMed ID: 34608217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband Photodetector Based on Inorganic Perovskite CsPbBr
    Cong H; Chu X; Wan F; Chu Z; Wang X; Ma Y; Jiang J; Shen L; You J; Xue C
    Small Methods; 2021 Aug; 5(8):e2100517. PubMed ID: 34927872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection.
    Pescaglini A; Martín A; Cammi D; Juska G; Ronning C; Pelucchi E; Iacopino D
    Nano Lett; 2014 Nov; 14(11):6202-9. PubMed ID: 25313827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared Photoresponse in Ge/Si Quantum Dots Enhanced by Photon-Trapping Hole Arrays.
    Yakimov AI; Kirienko VV; Bloshkin AA; Utkin DE; Dvurechenskii AV
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Broadband Germanium-Graphene Hybrid Photodetector with High Performance.
    Yang F; Cong H; Yu K; Zhou L; Wang N; Liu Z; Li C; Wang Q; Cheng B
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13422-13429. PubMed ID: 28361534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons.
    Yakimov AI; Kirienko VV; Bloshkin AA; Armbrister VA; Dvurechenskii AV; Hartmann JM
    Opt Express; 2017 Oct; 25(21):25602-25611. PubMed ID: 29041225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GaAs Nanowire Photodetectors Based on Au Nanoparticles Modification.
    Lin F; Cui J; Zhang Z; Wei Z; Hou X; Meng B; Liu Y; Tang J; Li K; Liao L; Hao Q
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband 400-2400 nm Ge heterostructure nanowire photodetector fabricated by three-dimensional Ge condensation technique.
    Lin G; Liang D; Yu C; Hong H; Mao Y; Li C; Chen S
    Opt Express; 2019 Oct; 27(22):32801-32809. PubMed ID: 31684485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The n-type Ge photodetectors with gold nanoparticles deposited to enhance the responsivity.
    Hsiao HT; Ni IC; Tzeng SD; Lin WF; Lin CH
    Nanoscale Res Lett; 2014; 9(1):640. PubMed ID: 25489291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.