These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33985064)

  • 1. Broadband chromatic dispersion measurements in higher-order modes selectively excited in optical fibers using a spatial light modulator.
    Zolnacz K; Szatkowski M; Masajada J; Urbanczyk W
    Opt Express; 2021 Apr; 29(9):13256-13268. PubMed ID: 33985064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.
    Ahn TJ; Jung Y; Oh K; Kim DY
    Opt Express; 2005 Dec; 13(25):10040-8. PubMed ID: 19503215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry.
    Lee JY; Kim DY
    Opt Express; 2006 Nov; 14(24):11608-15. PubMed ID: 19529580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-solid microstructured fiber with flat normal chromatic dispersion.
    Martynkien T; Pysz D; Stępień R; Buczyński R
    Opt Lett; 2014 Apr; 39(8):2342-5. PubMed ID: 24978988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study on supercontinuum generation by different optical modes in AsSe
    Chen L; Gao W; Chen L; Wang P; Ni C; Chen X; Zhou Y; Zhang W; Hu J; Liao M; Suzuki T; Ohishi Y
    Appl Opt; 2018 Jan; 57(3):382-390. PubMed ID: 29400785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores.
    Jiang X; Joly NY; Finger MA; Babic F; Pang M; Sopalla R; Frosz MH; Poulain S; Poulain M; Cardin V; Travers JC; St J Russell P
    Opt Lett; 2016 Sep; 41(18):4245-8. PubMed ID: 27628368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation of higher-order modes in optofluidic photonic crystal fiber.
    Ruskuc A; Koehler P; Weber MA; Andres-Arroyo A; Frosz MH; Russell PSJ; Euser TG
    Opt Express; 2018 Nov; 26(23):30245-30254. PubMed ID: 30469900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-based vortex beam source operating in a broadband or tunable mode.
    Bernas M; Napiorkowski M; Zolnacz K; Statkiewicz-Barabach G; Kiczor A; Mergo P; Urbanczyk W
    Opt Express; 2022 Jul; 30(15):27715-27729. PubMed ID: 36236937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers.
    Sollapur R; Kartashov D; Zürch M; Hoffmann A; Grigorova T; Sauer G; Hartung A; Schwuchow A; Bierlich J; Kobelke J; Chemnitz M; Schmidt MA; Spielmann C
    Light Sci Appl; 2017 Dec; 6(12):e17124. PubMed ID: 30167225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband chromatic dispersion in fiber-coupled optical interferometry.
    Allured R; Ashcom JB
    Appl Opt; 2021 Aug; 60(22):6371-6384. PubMed ID: 34612871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fiber-Based Chromatic Dispersion Probe for Simultaneous Measurement of Dual-Axis Absolute and Relative Displacement.
    Zhao R; Chen C; Xiong X; Chen YL; Ju BF
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endlessly mono-radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams.
    Sharma M; Pradhan P; Ung B
    Sci Rep; 2019 Feb; 9(1):2488. PubMed ID: 30792502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatic-dispersion measurement by modulation phase-shift method using a Kerr phase-interrogator.
    Baker C; Lu Y; Bao X
    Opt Express; 2014 Sep; 22(19):22314-9. PubMed ID: 25321703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercontinuum generation from a multiple-ring-holes tellurite microstructured optical fiber pumped by a 2 μm mode-locked picosecond fiber laser.
    Deng D; Gao W; Liao M; Duan Z; Cheng T; Suzuki T; Ohishi Y
    Appl Opt; 2013 Jun; 52(16):3818-23. PubMed ID: 23736338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation of higher order modes in optical fibers with parabolic index profile.
    Chen CL
    Appl Opt; 1988 Jun; 27(11):2353-6. PubMed ID: 20531759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrum-sliced Fourier-domain low-coherence interferometry for measuring the chromatic dispersion of an optical fiber.
    Lee JY; Kim DY
    Appl Opt; 2007 Oct; 46(29):7289-96. PubMed ID: 17932543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber.
    Zhao S; Yang H; Zhao C; Xiao Y
    Opt Express; 2017 Apr; 25(7):7192-7202. PubMed ID: 28380844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers.
    Hartung A; Heidt AM; Bartelt H
    Opt Express; 2011 Jun; 19(13):12275-83. PubMed ID: 21716464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel time-of-flight fiber dispersion measurement technique using supercontinuum light sources and acousto-optical tunable filters.
    Blume NG; Wagner S
    Appl Opt; 2015 Jul; 54(21):6406-9. PubMed ID: 26367820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High power LP
    Yang X; Xu ZH; Chen SP; Jiang ZF
    Opt Express; 2018 May; 26(11):13740-13745. PubMed ID: 29877422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.