These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33985157)

  • 1. Non-Hermitian effective medium theory and complex Dirac-like cones.
    Luo L; Shao Y; Li J; Fan R; Peng R; Wang M; Luo J; Lai Y
    Opt Express; 2021 May; 29(10):14345-14353. PubMed ID: 33985157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spawning rings of exceptional points out of Dirac cones.
    Zhen B; Hsu CW; Igarashi Y; Lu L; Kaminer I; Pick A; Chua SL; Joannopoulos JD; Soljačić M
    Nature; 2015 Sep; 525(7569):354-8. PubMed ID: 26352476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band engineering method to create Dirac cones of accidental degeneracy in general photonic crystals without symmetry.
    Chu H; Zhang Y; Luo J; Xu C; Xiong X; Peng R; Wang M; Lai Y
    Opt Express; 2021 Jun; 29(12):18070-18080. PubMed ID: 34154074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Hermitian semi-Dirac semi-metals.
    Banerjee A; Narayan A
    J Phys Condens Matter; 2021 May; 33(22):. PubMed ID: 33601357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exceptional cones in 4D parameter space.
    Wang Q; Ding K; Liu H; Zhu S; Chan CT
    Opt Express; 2020 Jan; 28(2):1758-1770. PubMed ID: 32121882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials.
    Huang X; Lai Y; Hang ZH; Zheng H; Chan CT
    Nat Mater; 2011 May; 10(8):582-6. PubMed ID: 21623377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Hermitian Dirac Cones.
    Xue H; Wang Q; Zhang B; Chong YD
    Phys Rev Lett; 2020 Jun; 124(23):236403. PubMed ID: 32603149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dirac cones with zero refractive indices in phoxonic crystals.
    Lei L; Yu T; Liu W; Wang T; Liao Q
    Opt Express; 2022 Jan; 30(1):308-317. PubMed ID: 35201209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annihilation of exceptional points from different Dirac valleys in a 2D photonic system.
    Król M; Septembre I; Oliwa P; Kędziora M; Łempicka-Mirek K; Muszyński M; Mazur R; Morawiak P; Piecek W; Kula P; Bardyszewski W; Lagoudakis PG; Solnyshkov DD; Malpuech G; Piętka B; Szczytko J
    Nat Commun; 2022 Sep; 13(1):5340. PubMed ID: 36096889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of Type-II Dirac Points in Graphynelike Photonic Lattices.
    Pyrialakos GG; Nye NS; Kantartzis NV; Christodoulides DN
    Phys Rev Lett; 2017 Sep; 119(11):113901. PubMed ID: 28949222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic computing: At tunable pseudospin-1 Hermitian Dirac-like cone.
    Indaleeb MM; Ahmed H; Banerjee S
    J Acoust Soc Am; 2022 Sep; 152(3):1449. PubMed ID: 36182281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Dirac cones in two-dimensional dielectric photonic crystals.
    Li Y; Mei J
    Opt Express; 2015 May; 23(9):12089-99. PubMed ID: 25969297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of exceptional points in photonic crystal slabs.
    Kamiński PM; Taghizadeh A; Breinbjerg O; Mørk J; Arslanagić S
    Opt Lett; 2017 Aug; 42(15):2866-2869. PubMed ID: 28957194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse Reshaping in Double-zero-index Photonic Crystals with Dirac-like-cone Dispersion.
    Xu T; Zhu D; Hang ZH
    Sci Rep; 2020 May; 10(1):8416. PubMed ID: 32439891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems.
    Leykam D; Bliokh KY; Huang C; Chong YD; Nori F
    Phys Rev Lett; 2017 Jan; 118(4):040401. PubMed ID: 28186785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three Dimensional Photonic Dirac Points in Metamaterials.
    Guo Q; Yang B; Xia L; Gao W; Liu H; Chen J; Xiang Y; Zhang S
    Phys Rev Lett; 2017 Nov; 119(21):213901. PubMed ID: 29219411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing non-Hermitian band structure of photonic Floquet media.
    Park J; Cho H; Lee S; Lee K; Lee K; Park HC; Ryu JW; Park N; Jeon S; Min B
    Sci Adv; 2022 Oct; 8(40):eabo6220. PubMed ID: 36206346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Hermitian photonics promises exceptional topology of light.
    Midya B; Zhao H; Feng L
    Nat Commun; 2018 Jul; 9(1):2674. PubMed ID: 29991729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Spontaneous Emission at Third-Order Dirac Exceptional Points in Inverse-Designed Photonic Crystals.
    Lin Z; Pick A; Lončar M; Rodriguez AW
    Phys Rev Lett; 2016 Sep; 117(10):107402. PubMed ID: 27636493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones.
    Nguyen HS; Dubois F; Deschamps T; Cueff S; Pardon A; Leclercq JL; Seassal C; Letartre X; Viktorovitch P
    Phys Rev Lett; 2018 Feb; 120(6):066102. PubMed ID: 29481254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.