These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33985207)

  • 1. Compact multi-functional frequency-selective absorber based on customizable impedance films.
    Lin M; Yi J; Chen X; Jiang ZH; Zhu L; Qi P; Burokur SN
    Opt Express; 2021 May; 29(10):14974-14984. PubMed ID: 33985207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ultra-Broadband and Highly-Efficient Metamaterial Absorber with Stand-Up Gradient Impedance Graphene Films.
    Wu B; Chen B; Ma S; Zhang D; Zu HR
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally tunable broadband metamaterial absorbers based on ionic liquids.
    Yang F; Zhang C; Zhang A; Zhu X; Xu H; Wang D
    Opt Express; 2022 Dec; 30(25):45883-45894. PubMed ID: 36522982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-light planar meta-absorber with wideband and full-polarization properties.
    Du Z; Liang J; Cai T; Wang X; Zhang Q; Deng T; Wu B; Mao R; Wang D
    Opt Express; 2021 Mar; 29(5):6434-6444. PubMed ID: 33726164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical method for designing tunable terahertz absorbers with the desired frequency and bandwidth.
    Liu Z; Guo L; Zhang Q
    Opt Express; 2021 Nov; 29(24):39777-39787. PubMed ID: 34809334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation.
    Shen Y; Zhang J; Pang Y; Wang J; Ma H; Qu S
    Opt Express; 2018 Jun; 26(12):15665-15674. PubMed ID: 30114824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically transparent metasurface Salisbury screen with wideband microwave absorption.
    Li T; Chen K; Ding G; Zhao J; Jiang T; Feng Y
    Opt Express; 2018 Dec; 26(26):34384-34395. PubMed ID: 30650861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Metamaterial Absorber using Eight-Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle Absorption.
    Nguyen TT; Lim S
    Sci Rep; 2018 Apr; 8(1):6633. PubMed ID: 29700385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.
    Rahmanzadeh M; Rajabalipanah H; Abdolali A
    Appl Opt; 2018 Feb; 57(4):959-968. PubMed ID: 29400774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications.
    Zhang Y; Dong H; Mou N; Li H; Yao X; Zhang L
    Nanoscale; 2021 Apr; 13(16):7831-7837. PubMed ID: 33876797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent broadband absorber based on a multilayer ITO conductive film.
    Zheng J; Zheng H; Pang Y; Qu B; Xu Z
    Opt Express; 2023 Jan; 31(3):3731-3742. PubMed ID: 36785359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A terahertz polarization insensitive dual band metamaterial absorber.
    Ma Y; Chen Q; Grant J; Saha SC; Khalid A; Cumming DR
    Opt Lett; 2011 Mar; 36(6):945-7. PubMed ID: 21403737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers.
    Deng R; Li M; Muneer B; Zhu Q; Shi Z; Song L; Zhang T
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional ultra-broadband absorber based on novel zigzag-shaped structure.
    Ji W; Cai T; Wang G; Sun Y; Li H; Wang C; Zhang C; Zhang Q
    Opt Express; 2019 Oct; 27(22):32835-32845. PubMed ID: 31684488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-band metamaterial absorber based on the arrangement of donut-type resonators.
    Park JW; Tuong PV; Rhee JY; Kim KW; Jang WH; Choi EH; Chen LY; Lee Y
    Opt Express; 2013 Apr; 21(8):9691-702. PubMed ID: 23609678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid metamaterial absorber for ultra-low and dual-broadband absorption.
    Zhang C; Yin S; Long C; Dong BW; He D; Cheng Q
    Opt Express; 2021 Apr; 29(9):14078-14086. PubMed ID: 33985133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable terahertz metamaterial absorber based on Dirac semimetal films.
    Wang T; Cao M; Zhang H; Zhang Y
    Appl Opt; 2018 Nov; 57(32):9555-9561. PubMed ID: 30461735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.