These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33985216)

  • 1. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function.
    Chen C; Lee B; Li NN; Chae M; Wang D; Wang QH; Lee B
    Opt Express; 2021 May; 29(10):15089-15103. PubMed ID: 33985216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction.
    Quan J; Yan B; Sang X; Zhong C; Li H; Qin X; Xiao R; Sun Z; Dong Y; Zhang H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing crosstalk of a multi-plane holographic display by the time-multiplexing stochastic gradient descent.
    Wang Z; Chen T; Chen Q; Tu K; Feng Q; Lv G; Wang A; Ming H
    Opt Express; 2023 Feb; 31(5):7413-7424. PubMed ID: 36859872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructed quality improvement with a stochastic gradient descent optimization algorithm for a spherical hologram.
    Pan Y; Wang J; Wu Y; Peng H; Yang H; Chen C
    Appl Opt; 2022 Jun; 61(17):5341-5349. PubMed ID: 36256220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnification and quality improvement for an optical cylindrical holographic display.
    Wang J; Guo Z; Wu Y
    Appl Opt; 2022 Dec; 61(35):10478-10483. PubMed ID: 36607109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk-free for multi-plane holographic display using double-constraint stochastic gradient descent.
    Wang J; Wang J; Zhou J; Zhang Y; Wu Y
    Opt Express; 2023 Sep; 31(19):31142-31157. PubMed ID: 37710641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High quality holographic 3D display with enhanced focus cues based on multiple directional light reconstruction.
    Wang Z; Liang L; Chen T; Lv G; Feng Q; Wang A; Ming H
    Opt Lett; 2024 Mar; 49(6):1548-1551. PubMed ID: 38489447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast hologram generation using intermediate angular-spectrum method for high-quality compact on-axis holographic display.
    Chen C; Chang K; Liu C; Wang J; Wang Q
    Opt Express; 2019 Sep; 27(20):29401-29414. PubMed ID: 31684675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-generated full-color phase-only hologram using a multiplane iterative algorithm with dynamic compensation.
    Zheng H; Zhou C; Shui X; Yu Y
    Appl Opt; 2022 Feb; 61(5):B262-B270. PubMed ID: 35201148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized computer-generated hologram for enhancing depth cue based on complex amplitude modulation.
    Pi D; Liu J; Wang J; Sun Y; Yang Y; Zhao W; Wang Y
    Opt Lett; 2022 Dec; 47(24):6377-6380. PubMed ID: 36538442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display.
    Jia J; Wang Y; Liu J; Li X; Pan Y; Sun Z; Zhang B; Zhao Q; Jiang W
    Appl Opt; 2013 Mar; 52(7):1404-12. PubMed ID: 23458792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network.
    Wang D; Li ZS; Zheng Y; Zhao YR; Liu C; Xu JB; Zheng YW; Huang Q; Chang CL; Zhang DW; Zhuang SL; Wang QH
    Light Sci Appl; 2024 Feb; 13(1):62. PubMed ID: 38424072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D reconstruction of unstained weakly scattering cells from a single defocused hologram.
    Rajora S; Butola M; Khare K
    Appl Opt; 2023 Apr; 62(10):D146-D156. PubMed ID: 37132780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display.
    Pi D; Liu J; Han Y; Yu S; Xiang N
    Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram.
    Yu L; Cai L
    J Opt Soc Am A Opt Image Sci Vis; 2001 May; 18(5):1033-45. PubMed ID: 11336206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized random phase tiles for non-iterative hologram generation.
    Velez-Zea A; Torroba R
    Appl Opt; 2019 Nov; 58(32):9013-9019. PubMed ID: 31873682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic display with optical computational Fresnel convolution to broaden distance.
    Wang J; Lei X; Wu Y; Jin F; Chen N
    Opt Express; 2022 Jan; 30(3):4288-4301. PubMed ID: 35209668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SGD-Based Adaptive NN Control Design for Uncertain Nonlinear Systems.
    Yang X; Zheng X; Gao H
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):5071-5083. PubMed ID: 29994566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display.
    Pi D; Liu J; Kang R; Zhang Z; Han Y
    Opt Express; 2019 Sep; 27(20):28410-28422. PubMed ID: 31684594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning-based complex field recovery from digital hologram with various depth objects.
    Ju YG; Choo HG; Park JH
    Opt Express; 2022 Jul; 30(15):26149-26168. PubMed ID: 36236811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.