BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33985220)

  • 1. Colloidal quantum dots lasing and coupling in 2D holographic photonic quasicrystals.
    Hayat A; Cui L; Liang H; Zhang S; Zhiyang X; Khan MA; Aziz G; Zhai T
    Opt Express; 2021 May; 29(10):15145-15158. PubMed ID: 33985220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals.
    Luo D; Du QG; Dai HT; Demir HV; Yang HZ; Ji W; Sun XW
    Sci Rep; 2012; 2():627. PubMed ID: 22953048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions.
    Kok MH; Lu W; Tam WY; Wong GK
    Opt Express; 2009 Apr; 17(9):7275-84. PubMed ID: 19399104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice.
    Notomi M; Suzuki H; Tamamura T; Edagawa K
    Phys Rev Lett; 2004 Mar; 92(12):123906. PubMed ID: 15089676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lasing from organic quasicrystal fabricated by seven- and nine-beam interference.
    Luo D; Li Y; Xu XW; Du QG
    Opt Express; 2016 May; 24(11):12330-5. PubMed ID: 27410148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bound State in the Continuum in Nanoantenna-Coupled Slab Waveguide Enables Low-Threshold Quantum-Dot Lasing.
    Wu M; Ding L; Sabatini RP; Sagar LK; Bappi G; Paniagua-Domínguez R; Sargent EH; Kuznetsov AI
    Nano Lett; 2021 Nov; 21(22):9754-9760. PubMed ID: 34780696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographically formed three-dimensional Penrose-type photonic quasicrystal through a lab-made single diffractive optical element.
    Harb A; Torres F; Ohlinger K; Lin Y; Lozano K; Xu D; Chen KP
    Opt Express; 2010 Sep; 18(19):20512-7. PubMed ID: 20940944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-threshold, single-mode, and linearly polarized lasing from all organic quasicrystal microcavity.
    Liu Z; Chen R; Liu Y; Zhang X; Sun X; Huang W; Luo D
    Opt Express; 2017 Sep; 25(18):21519-21525. PubMed ID: 29041449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Icosahedral quasicrystals for visible wavelengths by optical interference holography.
    Xu J; Ma R; Wang X; Tam WY
    Opt Express; 2007 Apr; 15(7):4287-95. PubMed ID: 19532673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of photonic-crystal surface-emitting lasers with enhanced in-plane optical feedback for high-speed operation.
    Inoue T; Yoshida M; Zoysa MD; Ishizaki K; Noda S
    Opt Express; 2020 Feb; 28(4):5050-5057. PubMed ID: 32121733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Aligned Emission of Distributed Feedback Lasers on Optical Fiber Sidewall.
    Zhai T; Ma X; Han L; Zhang S; Ge K; Xu Y; Xu Z; Cui L
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lasing action in gallium nitride quasicrystal nanorod arrays.
    Chang SP; Sou KP; Chen CH; Cheng YJ; Huang JK; Lin CH; Kuo HC; Chang CY; Hsieh WF
    Opt Express; 2012 May; 20(11):12457-62. PubMed ID: 22714233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical tubular zinc oxide microcavity enables efficient colloidal quantum dot lasing.
    Meng W; Li W; Zhou C; Cao J; Yang X
    Opt Express; 2023 Jun; 31(13):22055-22060. PubMed ID: 37381288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicolor Emission from Ultraviolet GaN-Based Photonic Quasicrystal Nanopyramid Structure with Semipolar In
    Chen CC; Lin HT; Chang SP; Kuo HC; Hung HW; Chien KH; Chang YC; Shih MH
    Nanoscale Res Lett; 2021 Sep; 16(1):145. PubMed ID: 34529162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization Singularities of Photonic Quasicrystals in Momentum Space.
    Che Z; Zhang Y; Liu W; Zhao M; Wang J; Zhang W; Guan F; Liu X; Liu W; Shi L; Zi J
    Phys Rev Lett; 2021 Jul; 127(4):043901. PubMed ID: 34355949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.
    Chang H; Min K; Lee M; Kang M; Park Y; Cho KS; Roh YG; Hwang SW; Jeon H
    Nanoscale; 2016 Mar; 8(12):6571-6. PubMed ID: 26935411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-Tunable and Highly Stable Perovskite-Quantum-Dot-Doped Lasers with Liquid Crystal Lasing Cavities.
    Chen LJ; Dai JH; Lin JD; Mo TS; Lin HP; Yeh HC; Chuang YC; Jiang SA; Lee CR
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33307-33315. PubMed ID: 30198255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous emission modulation of colloidal quantum dots via efficient coupling with hybrid plasmonic photonic crystal.
    Yuan XW; Shi L; Wang Q; Chen CQ; Liu XH; Sun LX; Zhang B; Zi J; Lu W
    Opt Express; 2014 Sep; 22(19):23473-9. PubMed ID: 25321816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Threshold Microlasers Based on Holographic Dual-Gratings.
    Zhai T; Han L; Ma X; Wang X
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34207843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A room temperature continuous-wave nanolaser using colloidal quantum wells.
    Yang Z; Pelton M; Fedin I; Talapin DV; Waks E
    Nat Commun; 2017 Jul; 8(1):143. PubMed ID: 28747633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.