These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33985246)

  • 21. Imaging through scattering media using differential intensity transmission matrices with different Hadamard orderings.
    Liu J; Zhao W; Zhai A; Wang D
    Opt Express; 2022 Dec; 30(25):45447-45458. PubMed ID: 36522950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort.
    Yu WK
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31548513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectrum Handoff Based on DQN Predictive Decision for Hybrid Cognitive Radio Networks.
    Cao K; Qian P
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging.
    Jiao S; Sun M; Gao Y; Lei T; Xie Z; Yuan X
    Opt Express; 2019 Apr; 27(9):12841-12854. PubMed ID: 31052819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Reinforcement Learning for Load Shedding Against Short-Term Voltage Instability in Large Power Systems.
    Zhang J; Luo Y; Wang B; Lu C; Si J; Song J
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4249-4260. PubMed ID: 34739383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selectivity Enhancement in Electronic Nose Based on an Optimized DQN.
    Wang Y; Xing J; Qian S
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29035335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Imaging Quality of Real-time Fourier Single-pixel Imaging via Deep Learning.
    Rizvi S; Cao J; Zhang K; Hao Q
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-pixel compressive optical image hiding based on conditional generative adversarial network.
    Li J; Li Y; Li J; Zhang Q; Li J
    Opt Express; 2020 Jul; 28(15):22992-23002. PubMed ID: 32752550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning can accelerate grasp-optimized motion planning.
    Ichnowski J; Avigal Y; Satish V; Goldberg K
    Sci Robot; 2020 Nov; 5(48):. PubMed ID: 33208523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating reinforcement learning agents for anatomical landmark detection.
    Alansary A; Oktay O; Li Y; Folgoc LL; Hou B; Vaillant G; Kamnitsas K; Vlontzos A; Glocker B; Kainz B; Rueckert D
    Med Image Anal; 2019 Apr; 53():156-164. PubMed ID: 30784956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Projector-defocusing rectification for Fourier single-pixel imaging.
    Xu B; Jiang H; Zhao H; Li X; Zhu S
    Opt Express; 2018 Feb; 26(4):5005-5017. PubMed ID: 29475343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-pixel imaging using a recurrent neural network combined with convolutional layers.
    Hoshi I; Shimobaba T; Kakue T; Ito T
    Opt Express; 2020 Nov; 28(23):34069-34078. PubMed ID: 33182884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DQNViz: A Visual Analytics Approach to Understand Deep Q-Networks.
    Wang J; Gou L; Shen HW; Yang H
    IEEE Trans Vis Comput Graph; 2018 Sep; ():. PubMed ID: 30188823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning.
    Gao W; Yan QR; Zhou HL; Yang ST; Fang ZY; Wang YH
    Opt Express; 2021 Feb; 29(4):5552-5566. PubMed ID: 33726090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radon single-pixel imaging with projective sampling.
    Dongfeng S; Jian H; Wenwen M; Kaixin Y; Baoqing S; Yingjian W; Kee Y; Chenbo X; Dong L; Wenyue Z
    Opt Express; 2019 May; 27(10):14594-14609. PubMed ID: 31163905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative Traffic Signal Control with Traffic Flow Prediction in Multi-Intersection.
    Kim D; Jeong O
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Distributed Multi-Agent Formation Control Method Based on Deep Q Learning.
    Xie N; Hu Y; Chen L
    Front Neurorobot; 2022; 16():817168. PubMed ID: 35431851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-pixel sensing with optimal binarized modulation.
    Fu H; Bian L; Zhang J
    Opt Lett; 2020 Jun; 45(11):3111-3114. PubMed ID: 32479472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.